Long-term and continuous large-scale exploitation has increasingly exhausted shallow metal mineral resources,and deep mining has become inevitable.The current global status of deep mining of metal mineral resources wa...Long-term and continuous large-scale exploitation has increasingly exhausted shallow metal mineral resources,and deep mining has become inevitable.The current global status of deep mining of metal mineral resources was presented,a series of engineering challenges faced by deep mining were systematically analyzed,and some progress and future innovation focus in key engineering technologies,such as the prediction and prevention of rockburst,cooling techniques,rock support techniques,deep hoisting techniques,and several nontraditional deep mining techniques,were highlighted.Meanwhile,new insights into development strategies of deep mining technology were proposed.The integration of these forward-looking key innovative technologies will form the overall framework of an innovative technology system for the deep mining of metal minerals.This technology system will help to achieve safe,efficient,and green exploitation of deep underground metal mineral resources and ensure the sustainable development of the metal mining industry.展开更多
A large-scale evaporate series is developed in Paleogene-Neogene strata in the Kuqa basin. The series is composed mainly of evaporate with thin beds of clastic rock (mainly mudstone and siltstone). In grayish white ...A large-scale evaporate series is developed in Paleogene-Neogene strata in the Kuqa basin. The series is composed mainly of evaporate with thin beds of clastic rock (mainly mudstone and siltstone). In grayish white medium- and coarse-grained sandstone in Miocene strata, the formation of copper minerals is in close connection with brine. In joint planes, which are developed in vertical strata, are filled with gypsum. Gypsum and copper-mineralized sandstone contains enormous copper minerals, mainly atacamite. According to the SEM analysis for salt rock, gypsum rock, limestone, grayish green siltstone, grayish white medium-coarse-grained sandstone, some minerals are composed of metallic elements including Au, Ag, Cu, Zn, Pb, Co, Ni and U etc., in which Au occurs in a native form, Cu occurs in a native form or as atacamite in salt rock, gypsum rock and limestone, Ag occurs as silver sulfide in gypsum, and Zn, Pb, Co, Ni, U occur as compounds along with the above metallic ions in evaporate or clastic rock. From SEM images, we can see that metallic elements or their compounds (oxides or sulfides) "take root" as grains in salt or gypsum crystals, which belong to primary chemical sedimentation along with evaporate, while some grains "float" on surface of salt or gypsum. In the former case, mineral grains were formed together with salt (gypsum) crystals; while in the latter case, minerals were enriched from internal metallic ions (Paleogene evaporate samples) or external metallic ions (Neogene gypsum samples) in the late stage of evaporate formation. The metallic ions in Paleogene evaporate samples might originate from weathered or denudated materials in the south Tianshan Mountains. The metallic ions in the Neogene evaporate samples might be from metal- bearing brine, which migrated upward to surface along fractures and leached into evaporate (gypsum). Occurrence of metallic minerals and their compounds (elementary substance) in Paleogene evaporate proves that diversified metallic minerals exist in evaporate. The source of metallic ions in the Neogene evaporate series shows that evaporate could provide materials for late-stage metallic mineralization.展开更多
The electronic structure and bonding nature of adsorbing bonding complexes which consist of Amphoteric Collector-I and Mg^(2+), Ca^(2+), MgPO_4^-, CaPO_^-4, CaCO_3, as well aa MgCO_3, are studied using quantum chemist...The electronic structure and bonding nature of adsorbing bonding complexes which consist of Amphoteric Collector-I and Mg^(2+), Ca^(2+), MgPO_4^-, CaPO_^-4, CaCO_3, as well aa MgCO_3, are studied using quantum chemistry CNDO/2, It is predicted that magnesium salts are more liable to form adsorbing chelates with Amphoteric Collector-I than calcium salts, and all results coincide with that obtained in flotation.展开更多
OBJECTIVE Cerebral ischemia or ischemic stroke is due to insufficient blood supply to the brain,which causes hypoxia or ischemia in some areas.This work aimed to quantify the minerals and heavy metals in Qishiwei Zhen...OBJECTIVE Cerebral ischemia or ischemic stroke is due to insufficient blood supply to the brain,which causes hypoxia or ischemia in some areas.This work aimed to quantify the minerals and heavy metals in Qishiwei Zhenzhu pill in vivo and in vitro,analyze its effect on the types and abundance of intestinal flora,and study its mechanism on inflammation and apoptosis pathways as a treatment for cerebral ischemia.METHODS Microwave digestion and inductively coupled plasma mass spectrometry(ICP-MS)were used to determine the minerals and heavy metals in 10 batches of Qishiwei Zhenzhu pill in vitro.With the use of the middle cerebral artery obstruction(MCAO)model,ICP-MS was applied to determine the content of minerals and heavy metals in hepatic portal vein blood,abdominal aortic blood,brain,liver,kidney,hair,urine and feces at different time periods.On this model,the ileum,cecum,and colon tissues were tested for intestinal pathology,and 16S rRNA was used for sequencing.Species taxonomy,αdiversity,and species microbial composition and structure analysis were also performed.Polymerase chain reaction and Western blotting were employed to determine the mRNA and protein expression of p38 MAPK,caspase-3,IL^(-1)βand TNF-αin the ischemic brain tissues of rats.RESULTS The average content of heavy metals in the 10 batches of Qishiwei Zhenzhu pill samples is in the descending order Hg>Cu>Pb.Significant differences in the metal elements are found among Qishiwei Zhenzhu pill from different manufacturers but not among the different batches of the same manufacturer.An extremely low content of heavy metals are absorbed into the blood or accumulated in the brain,liver,kidney,and other tissues.Stool is the main excretion route of minerals and heavy metals from Qishiwei Zhenzhu pill.This medicine helps repair the intestinal mucosa in MCAO rats.At the phylum level,it can regulate the abundance of Firmicutes and Proteobacteria in the intestinal flora of rats with cerebral ischemia.At the genus level,it can adjust the abundance of Escherichia Shigella.At the species level,it can adjust the abundance of Lactobacillus yoelii and Lactobacillus reuteri.Cluster classification results show that Qishiwei Zhenzhu pill can improve the intestinal flora of rats with cerebral ischemia,reduce the mRNA and protein expression of caspase-3 and IL^(-1)βin rat brain tissues,and have a tendency to decrease the mRNA expression of p38 MAPK and TNF-α.CONCLUSION Quantifying the minerals and heavy metals in Qishiwei Zhenzhu pill in vivo and in vitro will help improve their quality standards.Minerals and heavy metals are mainly excreted in feces,accumulate in extremely low levels in various tissues,and do not damage the intestinal mucosa.The effective material basis of Qishiwei Zhenzhu pill in treating cerebral ischemia may be related to their Li,Cr,and Cd elements.These pills can improve the environment of intestinal flora,and their mechanism of treatment for cerebral ischemia may be related to the down-regulation of IL^(-1)βinflammatory factor and inhibition of cell apoptosis.展开更多
The China National Metals and Minerals I/E Corporation, the core enterprise of the China Metals and Minerals Group, is a special State foreign trade corporation. Since founding in 1950, the corporation has undertaken ...The China National Metals and Minerals I/E Corporation, the core enterprise of the China Metals and Minerals Group, is a special State foreign trade corporation. Since founding in 1950, the corporation has undertaken imports and exports of steel, metals and minerals and building appliances. Under展开更多
Social economic growth and the increasing demand for mineral resources have promoted the development of metallic mineral processing technology.Therefore,in order to satisfy the demands for development in mining,cultiv...Social economic growth and the increasing demand for mineral resources have promoted the development of metallic mineral processing technology.Therefore,in order to satisfy the demands for development in mining,cultivating comprehensive mineral processing engineering professionals with strong innovative practical skills has become the top priority in current education.We have established a new course,“Metallic Mineral Processing,”for students majoring in mineral processing engineering in universities,with coal and other sources of energy as the main focus.This paper analyzes the purpose and significance of setting up this course and the exploration of the reform of the teaching mode,with the aim of improving the teaching quality and ensuring the cultivation of mineral processing engineering undergraduates.展开更多
As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationship...As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationships with gold deposits remain uncertain. To investigate the temporal relationship between these nonferrous metal and gold ore deposits, We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating. The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5 ± 1.8 Ma to 112.6 ± 1.5 Ma, with an average age of 113.6 ± 1.6 Ma; the LA-ICP-MS ^206pb/^238U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma, with a weighted mean age of 116.04 ± 0.95 Ma; the LA-ICP-MS ^206pb/^238U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from 126 Ma to 106 Ma, with a weighted mean age of 116.6 ± 1.7 Ma; and the LA-ICP-MS ^206pb/^238U ages of 19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma, with a weighted mean age of 111.7 ± 0.6 Ma. All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma. Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma, while Weideshanian magmatism occurred between 126 Ma to 108 Ma. Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study, suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong. This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time. In addition, field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite, with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton. We propose the following mineralization scenario: In the Early Cretaceous, an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle, which resulted in the formation of mantle-derived fluids enriched in metal elements. During the rapid process of magma ascent and intrusion, crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust. These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid. The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type, skarn-type, and hydrothermal-vein-type ores, thus forming a series of Mo(W), Cu, and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula. In contrast, the medium- to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold (silver) ores under the appropriate physiochemical and structural conditions. The metaliogenic epoch of the molybdenum, copper, and silver deposits, and their spatio-temporal and genetic relations to the gold deposits, as demonstrated in this study, not only provide important insights to the study of regional metallogeny, our understanding of the metallogenesis of the Jiaodong type gold deposit, and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula, but also have practical value in guiding the mineral exploration.展开更多
The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Iminer...The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Imineral electron microprobe analysis,zircon U-Pb dating and Hf isotope analysis were carried out for the Jinjiling and Pangxiemu plutons.The zircon U-Pb dating yields weighted mean ages of 152.9±0.9 Ma for the Jinjiling pluton and 151.7±1.5 Ma for the Pangxiemu pluton,with a narrow gap between them.The Jinjiling and Pangxiemu plutons both have geochemical characteristics of high SiO2,Al2 O3,Na2 O,K2 O and low TiO2,MgO,CaO,P2 O5 contents,with intense depletions in Sr,Ba,Ti,Eu and enrichments in Ga,FeoOT and HFSE,and these characteristics reflect an A-type affinity.From the Jinjiling to the Pangxiemu plutons,the mineral composition of mica changes from lepidomelane to zinnwaldite,with increases in F,Li2 O and Rb2 O contents.The mineral composition of zircon changes from low Zr/Hf to high Zr/Hf,with increasing HfO2,P2 O5 and UO2+ThO2+Y2 O3 contents.The mineral compositions of feldspar indicate that the Pangxiemu pluton contains more alkali feldspar than the Jinjiling pluton.The whole-rock geochemistry and mineral compositions reveal a higher degree of differentiation for the Pangxiemu pluton.The nearly uniformεHf(t)indicates the same source region for the two plutons:both were derived from partial melting of the lower crust,with small contributions of mantle materials.In addition,higher F,lower Nb/Ta and Zr/Hf ratios in the Pangxiemu Pluton suggest a closer relationship with the rare metal mineralization than for the Jinjiling pluton.展开更多
Many Cenozoic metal deposits have been found during the past decade. Among them, the Fuwan Ag deposit in Guangdong is the largest Ag deposit in China. Besides, the largest Cu deposit of China in Yulong, Tibet, the lar...Many Cenozoic metal deposits have been found during the past decade. Among them, the Fuwan Ag deposit in Guangdong is the largest Ag deposit in China. Besides, the largest Cu deposit of China in Yulong, Tibet, the largest Pb-Zn deposit of China in Jinding, Yunnan, and the largest Au deposit of China in Jinguashi, Taiwan, were also formed in the Cenozoic. Why so many important “present” deposits formed during such a short period of geological history is the key problem. The major reason is that different tectonic settings control different kinds of magmatic activity and mineralization at the same time. In southwestern China, porphyry-type Cu deposits such as Yulong were formed during the early stage of the Himalayan orogeny, sediment-hosted Pb-Zn deposits such as Jinding were formed within intermontane basins related to deep faults, and carbonatite-related deposits such as the Maoniuping REE deposit and alkalic magmatic rock-related deposits such as the Beiya Au deposit originated from the mantle source. In southeastern China, the Fuwan Ag deposit was related to continental rifting which was triggered by the mantle plume. In Taiwan, the Jinguashi Au deposit was formed during the subduction process of an oceanic plate beneath a continental plate. Besides, the features such as the diversification, inheritance, large size, deep source of metals and fluids of the Cenozoic (Present or Recent) mineralization can be used as a key to the search for past deposits.展开更多
There occur abundant cherts in the Mesozoic and Cenozoic strata in southern Tibet. Some of them possess characteristic hydrothermal structures such as layered, laminated, massive and breccia structures. Ratios of Al/...There occur abundant cherts in the Mesozoic and Cenozoic strata in southern Tibet. Some of them possess characteristic hydrothermal structures such as layered, laminated, massive and breccia structures. Ratios of Al/(Al+Fe+Mn), Co/Ni, Fe/Ti and TiO2-A1203 demonstrate that their origin is related to hydrothermal sedimentation. The chert formations have close relationship with Sb, Au and poly-metallic mineralization, and the ore-forming fluid show strong correlation with fossil hydrothermal water. There occur abundant cherts in the Mesozoic and Cenozoic strata in southern Tibet. Some of them possess characteristic hydrothermal structures such as layered, laminated, massive and breccia structures. Ratios of A1/(AI+Fe+Mn), Co/Ni, Fe/Ti and TiO2-A1203 demonstrate that their origin is related to hydrothermal sedimentation. The chert formations have close relationship with Sb, Au and poly-metallic mineralization, and the ore-forming fluid show strong correlation with fossil hvdrothermal water.展开更多
In order to understand the influence of different factors on the microwave response characteristics of ores,the effects of electrical conductivity,metal mineral content,compactness,metal mineral distribution,microwave...In order to understand the influence of different factors on the microwave response characteristics of ores,the effects of electrical conductivity,metal mineral content,compactness,metal mineral distribution,microwave frequency and temperature on the dielectric properties of synthetic ores(metal mineral and quartz)were studied.Microwave heating tests were carried out on three types of natural ores(Hongtoushan copper ore,Sishanling iron ore and Dandong gold ore)with significant differences in metal mineral contents.The test results showed that under microwave irradiation,the stronger the electrical conductivity of the metal minerals,the smaller the penetration depth in synthetic ore.For those metal minerals with lower electrical conductivity,the microwave absorption coefficient of the synthetic samples increases with increasing metal mineral content.For those metal minerals with higher electrical conductivity,the microwave absorption coefficient of the samples first increases and then decreases as the metal mineral content increases.When the metal minerals are distributed in layers,the penetration depth is much less than that given a uniform distribution.The penetration depth in the sample at microwave frequency of 915 MHz is greater than that at 2.45 GHz.The higher the electrical conductivity of metal minerals used in synthetic ores,the higher the high-temperature sensitivity of electromagnetic shielding coefficient(0.C-500.C).The Hongtoushan copper ore with high metal mineral content exhibits obvious size effect.The effects of ore structure and crystal particle size on the distribution characteristics of microcracks were discussed.Based on the test results,a quantitative prediction model of microwave sensitivity of ore was proposed,which provides guidance for the prediction of ore heating effect and the selection of microwave heating sequence of ore.展开更多
The quadrennial Secretary General’s meeting of the Geological and Mineral Resources Branch of the China Nonferrous Metals Industry Association(CNMIA)took place on April 9.It’s learned from the meeting that nonferrou...The quadrennial Secretary General’s meeting of the Geological and Mineral Resources Branch of the China Nonferrous Metals Industry Association(CNMIA)took place on April 9.It’s learned from the meeting that nonferrous geological prospecting institutions across the country completed 3,901 geological展开更多
The Land and Resources Department of Hainan Province said on November 10 that the Overall Mineral Resources Plan of Hainan Province(2016-2020)(hereinafter referred to as the'Plan')has gone into effect with the...The Land and Resources Department of Hainan Province said on November 10 that the Overall Mineral Resources Plan of Hainan Province(2016-2020)(hereinafter referred to as the'Plan')has gone into effect with the approval of the Ministry of Land and Resources,and that the province will strongly promote the exploration and development of展开更多
基金financial supports from the Fundamental Research Funds for the Central Universities, China (No. FRFTP-20-041A1)the National Natural Science Foundation of China (Nos. U2034206, 52074020)。
文摘Long-term and continuous large-scale exploitation has increasingly exhausted shallow metal mineral resources,and deep mining has become inevitable.The current global status of deep mining of metal mineral resources was presented,a series of engineering challenges faced by deep mining were systematically analyzed,and some progress and future innovation focus in key engineering technologies,such as the prediction and prevention of rockburst,cooling techniques,rock support techniques,deep hoisting techniques,and several nontraditional deep mining techniques,were highlighted.Meanwhile,new insights into development strategies of deep mining technology were proposed.The integration of these forward-looking key innovative technologies will form the overall framework of an innovative technology system for the deep mining of metal minerals.This technology system will help to achieve safe,efficient,and green exploitation of deep underground metal mineral resources and ensure the sustainable development of the metal mining industry.
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions(K0807)granted by the Institutc of Mineral Resources,Chinese Academy of Geological Sciencesthe Scientific and Technical Supporting Project during the National Eleventh Five-Yea Plan Period (2006BAB07B06)
文摘A large-scale evaporate series is developed in Paleogene-Neogene strata in the Kuqa basin. The series is composed mainly of evaporate with thin beds of clastic rock (mainly mudstone and siltstone). In grayish white medium- and coarse-grained sandstone in Miocene strata, the formation of copper minerals is in close connection with brine. In joint planes, which are developed in vertical strata, are filled with gypsum. Gypsum and copper-mineralized sandstone contains enormous copper minerals, mainly atacamite. According to the SEM analysis for salt rock, gypsum rock, limestone, grayish green siltstone, grayish white medium-coarse-grained sandstone, some minerals are composed of metallic elements including Au, Ag, Cu, Zn, Pb, Co, Ni and U etc., in which Au occurs in a native form, Cu occurs in a native form or as atacamite in salt rock, gypsum rock and limestone, Ag occurs as silver sulfide in gypsum, and Zn, Pb, Co, Ni, U occur as compounds along with the above metallic ions in evaporate or clastic rock. From SEM images, we can see that metallic elements or their compounds (oxides or sulfides) "take root" as grains in salt or gypsum crystals, which belong to primary chemical sedimentation along with evaporate, while some grains "float" on surface of salt or gypsum. In the former case, mineral grains were formed together with salt (gypsum) crystals; while in the latter case, minerals were enriched from internal metallic ions (Paleogene evaporate samples) or external metallic ions (Neogene gypsum samples) in the late stage of evaporate formation. The metallic ions in Paleogene evaporate samples might originate from weathered or denudated materials in the south Tianshan Mountains. The metallic ions in the Neogene evaporate samples might be from metal- bearing brine, which migrated upward to surface along fractures and leached into evaporate (gypsum). Occurrence of metallic minerals and their compounds (elementary substance) in Paleogene evaporate proves that diversified metallic minerals exist in evaporate. The source of metallic ions in the Neogene evaporate series shows that evaporate could provide materials for late-stage metallic mineralization.
文摘The electronic structure and bonding nature of adsorbing bonding complexes which consist of Amphoteric Collector-I and Mg^(2+), Ca^(2+), MgPO_4^-, CaPO_^-4, CaCO_3, as well aa MgCO_3, are studied using quantum chemistry CNDO/2, It is predicted that magnesium salts are more liable to form adsorbing chelates with Amphoteric Collector-I than calcium salts, and all results coincide with that obtained in flotation.
文摘OBJECTIVE Cerebral ischemia or ischemic stroke is due to insufficient blood supply to the brain,which causes hypoxia or ischemia in some areas.This work aimed to quantify the minerals and heavy metals in Qishiwei Zhenzhu pill in vivo and in vitro,analyze its effect on the types and abundance of intestinal flora,and study its mechanism on inflammation and apoptosis pathways as a treatment for cerebral ischemia.METHODS Microwave digestion and inductively coupled plasma mass spectrometry(ICP-MS)were used to determine the minerals and heavy metals in 10 batches of Qishiwei Zhenzhu pill in vitro.With the use of the middle cerebral artery obstruction(MCAO)model,ICP-MS was applied to determine the content of minerals and heavy metals in hepatic portal vein blood,abdominal aortic blood,brain,liver,kidney,hair,urine and feces at different time periods.On this model,the ileum,cecum,and colon tissues were tested for intestinal pathology,and 16S rRNA was used for sequencing.Species taxonomy,αdiversity,and species microbial composition and structure analysis were also performed.Polymerase chain reaction and Western blotting were employed to determine the mRNA and protein expression of p38 MAPK,caspase-3,IL^(-1)βand TNF-αin the ischemic brain tissues of rats.RESULTS The average content of heavy metals in the 10 batches of Qishiwei Zhenzhu pill samples is in the descending order Hg>Cu>Pb.Significant differences in the metal elements are found among Qishiwei Zhenzhu pill from different manufacturers but not among the different batches of the same manufacturer.An extremely low content of heavy metals are absorbed into the blood or accumulated in the brain,liver,kidney,and other tissues.Stool is the main excretion route of minerals and heavy metals from Qishiwei Zhenzhu pill.This medicine helps repair the intestinal mucosa in MCAO rats.At the phylum level,it can regulate the abundance of Firmicutes and Proteobacteria in the intestinal flora of rats with cerebral ischemia.At the genus level,it can adjust the abundance of Escherichia Shigella.At the species level,it can adjust the abundance of Lactobacillus yoelii and Lactobacillus reuteri.Cluster classification results show that Qishiwei Zhenzhu pill can improve the intestinal flora of rats with cerebral ischemia,reduce the mRNA and protein expression of caspase-3 and IL^(-1)βin rat brain tissues,and have a tendency to decrease the mRNA expression of p38 MAPK and TNF-α.CONCLUSION Quantifying the minerals and heavy metals in Qishiwei Zhenzhu pill in vivo and in vitro will help improve their quality standards.Minerals and heavy metals are mainly excreted in feces,accumulate in extremely low levels in various tissues,and do not damage the intestinal mucosa.The effective material basis of Qishiwei Zhenzhu pill in treating cerebral ischemia may be related to their Li,Cr,and Cd elements.These pills can improve the environment of intestinal flora,and their mechanism of treatment for cerebral ischemia may be related to the down-regulation of IL^(-1)βinflammatory factor and inhibition of cell apoptosis.
文摘The China National Metals and Minerals I/E Corporation, the core enterprise of the China Metals and Minerals Group, is a special State foreign trade corporation. Since founding in 1950, the corporation has undertaken imports and exports of steel, metals and minerals and building appliances. Under
基金This study was financially supported by the Undergraduate Education and Teaching Research and Reform Project of CUMTB(J20ZD08,202112)the Yueqi Outstanding Scholar Award of CUMTB.
文摘Social economic growth and the increasing demand for mineral resources have promoted the development of metallic mineral processing technology.Therefore,in order to satisfy the demands for development in mining,cultivating comprehensive mineral processing engineering professionals with strong innovative practical skills has become the top priority in current education.We have established a new course,“Metallic Mineral Processing,”for students majoring in mineral processing engineering in universities,with coal and other sources of energy as the main focus.This paper analyzes the purpose and significance of setting up this course and the exploration of the reform of the teaching mode,with the aim of improving the teaching quality and ensuring the cultivation of mineral processing engineering undergraduates.
基金funded by Taishan Scholar Special Project Funds(ts201511076)Key Research and Development Project of Shandong Province(2017CXGC1604)
文摘As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationships with gold deposits remain uncertain. To investigate the temporal relationship between these nonferrous metal and gold ore deposits, We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating. The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5 ± 1.8 Ma to 112.6 ± 1.5 Ma, with an average age of 113.6 ± 1.6 Ma; the LA-ICP-MS ^206pb/^238U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma, with a weighted mean age of 116.04 ± 0.95 Ma; the LA-ICP-MS ^206pb/^238U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from 126 Ma to 106 Ma, with a weighted mean age of 116.6 ± 1.7 Ma; and the LA-ICP-MS ^206pb/^238U ages of 19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma, with a weighted mean age of 111.7 ± 0.6 Ma. All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma. Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma, while Weideshanian magmatism occurred between 126 Ma to 108 Ma. Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study, suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong. This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time. In addition, field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite, with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton. We propose the following mineralization scenario: In the Early Cretaceous, an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle, which resulted in the formation of mantle-derived fluids enriched in metal elements. During the rapid process of magma ascent and intrusion, crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust. These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid. The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type, skarn-type, and hydrothermal-vein-type ores, thus forming a series of Mo(W), Cu, and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula. In contrast, the medium- to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold (silver) ores under the appropriate physiochemical and structural conditions. The metaliogenic epoch of the molybdenum, copper, and silver deposits, and their spatio-temporal and genetic relations to the gold deposits, as demonstrated in this study, not only provide important insights to the study of regional metallogeny, our understanding of the metallogenesis of the Jiaodong type gold deposit, and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula, but also have practical value in guiding the mineral exploration.
基金financially supported by the Key R&D Program of China(Grant No.2017YFC0602402)the Innovationdriven Plan of Central South University,China(Grant No.2015CX008)+2 种基金the China Postdoctoral Science Foundation(Grant No.2017M622597)Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education(Grant No.2019YSJS23)the Natural Science Foundation of Hunan Province(Grant No.2017JJ3138)
文摘The Jiuyishan complex massif,located in the northern section of the Nanling region,is a combination of five plutons,namely,the Xuehuading,Jinjiling,Pangxiemu,Shaziling and Xishan plutons.Whole-rock geochemistry,Imineral electron microprobe analysis,zircon U-Pb dating and Hf isotope analysis were carried out for the Jinjiling and Pangxiemu plutons.The zircon U-Pb dating yields weighted mean ages of 152.9±0.9 Ma for the Jinjiling pluton and 151.7±1.5 Ma for the Pangxiemu pluton,with a narrow gap between them.The Jinjiling and Pangxiemu plutons both have geochemical characteristics of high SiO2,Al2 O3,Na2 O,K2 O and low TiO2,MgO,CaO,P2 O5 contents,with intense depletions in Sr,Ba,Ti,Eu and enrichments in Ga,FeoOT and HFSE,and these characteristics reflect an A-type affinity.From the Jinjiling to the Pangxiemu plutons,the mineral composition of mica changes from lepidomelane to zinnwaldite,with increases in F,Li2 O and Rb2 O contents.The mineral composition of zircon changes from low Zr/Hf to high Zr/Hf,with increasing HfO2,P2 O5 and UO2+ThO2+Y2 O3 contents.The mineral compositions of feldspar indicate that the Pangxiemu pluton contains more alkali feldspar than the Jinjiling pluton.The whole-rock geochemistry and mineral compositions reveal a higher degree of differentiation for the Pangxiemu pluton.The nearly uniformεHf(t)indicates the same source region for the two plutons:both were derived from partial melting of the lower crust,with small contributions of mantle materials.In addition,higher F,lower Nb/Ta and Zr/Hf ratios in the Pangxiemu Pluton suggest a closer relationship with the rare metal mineralization than for the Jinjiling pluton.
基金This work was supported by the 973 Program underthe State Science and Technology Commissionby the State Planning Commissionthe Ministry of Land and Resources.
文摘Many Cenozoic metal deposits have been found during the past decade. Among them, the Fuwan Ag deposit in Guangdong is the largest Ag deposit in China. Besides, the largest Cu deposit of China in Yulong, Tibet, the largest Pb-Zn deposit of China in Jinding, Yunnan, and the largest Au deposit of China in Jinguashi, Taiwan, were also formed in the Cenozoic. Why so many important “present” deposits formed during such a short period of geological history is the key problem. The major reason is that different tectonic settings control different kinds of magmatic activity and mineralization at the same time. In southwestern China, porphyry-type Cu deposits such as Yulong were formed during the early stage of the Himalayan orogeny, sediment-hosted Pb-Zn deposits such as Jinding were formed within intermontane basins related to deep faults, and carbonatite-related deposits such as the Maoniuping REE deposit and alkalic magmatic rock-related deposits such as the Beiya Au deposit originated from the mantle source. In southeastern China, the Fuwan Ag deposit was related to continental rifting which was triggered by the mantle plume. In Taiwan, the Jinguashi Au deposit was formed during the subduction process of an oceanic plate beneath a continental plate. Besides, the features such as the diversification, inheritance, large size, deep source of metals and fluids of the Cenozoic (Present or Recent) mineralization can be used as a key to the search for past deposits.
基金Ministry of Science and Technology 973 Program(Grant No.2002CB412600-VI)NSFC(Grant No.40073010)the Ph.D.Training Base Fund the National Education Ministry of China(Grant Nos.20040558050,20000099815)
文摘There occur abundant cherts in the Mesozoic and Cenozoic strata in southern Tibet. Some of them possess characteristic hydrothermal structures such as layered, laminated, massive and breccia structures. Ratios of Al/(Al+Fe+Mn), Co/Ni, Fe/Ti and TiO2-A1203 demonstrate that their origin is related to hydrothermal sedimentation. The chert formations have close relationship with Sb, Au and poly-metallic mineralization, and the ore-forming fluid show strong correlation with fossil hydrothermal water. There occur abundant cherts in the Mesozoic and Cenozoic strata in southern Tibet. Some of them possess characteristic hydrothermal structures such as layered, laminated, massive and breccia structures. Ratios of A1/(AI+Fe+Mn), Co/Ni, Fe/Ti and TiO2-A1203 demonstrate that their origin is related to hydrothermal sedimentation. The chert formations have close relationship with Sb, Au and poly-metallic mineralization, and the ore-forming fluid show strong correlation with fossil hvdrothermal water.
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)supported by Liaoning Revitalization Talents Program(Grant No.XLYC1801002)。
文摘In order to understand the influence of different factors on the microwave response characteristics of ores,the effects of electrical conductivity,metal mineral content,compactness,metal mineral distribution,microwave frequency and temperature on the dielectric properties of synthetic ores(metal mineral and quartz)were studied.Microwave heating tests were carried out on three types of natural ores(Hongtoushan copper ore,Sishanling iron ore and Dandong gold ore)with significant differences in metal mineral contents.The test results showed that under microwave irradiation,the stronger the electrical conductivity of the metal minerals,the smaller the penetration depth in synthetic ore.For those metal minerals with lower electrical conductivity,the microwave absorption coefficient of the synthetic samples increases with increasing metal mineral content.For those metal minerals with higher electrical conductivity,the microwave absorption coefficient of the samples first increases and then decreases as the metal mineral content increases.When the metal minerals are distributed in layers,the penetration depth is much less than that given a uniform distribution.The penetration depth in the sample at microwave frequency of 915 MHz is greater than that at 2.45 GHz.The higher the electrical conductivity of metal minerals used in synthetic ores,the higher the high-temperature sensitivity of electromagnetic shielding coefficient(0.C-500.C).The Hongtoushan copper ore with high metal mineral content exhibits obvious size effect.The effects of ore structure and crystal particle size on the distribution characteristics of microcracks were discussed.Based on the test results,a quantitative prediction model of microwave sensitivity of ore was proposed,which provides guidance for the prediction of ore heating effect and the selection of microwave heating sequence of ore.
文摘The quadrennial Secretary General’s meeting of the Geological and Mineral Resources Branch of the China Nonferrous Metals Industry Association(CNMIA)took place on April 9.It’s learned from the meeting that nonferrous geological prospecting institutions across the country completed 3,901 geological
文摘The Land and Resources Department of Hainan Province said on November 10 that the Overall Mineral Resources Plan of Hainan Province(2016-2020)(hereinafter referred to as the'Plan')has gone into effect with the approval of the Ministry of Land and Resources,and that the province will strongly promote the exploration and development of