The carbothermal reduction of MgO and Al_(2)O_(3) in argon flow at low pressure allows to lower the onset temperature of metal vapor formation.Thermodynamic calculations indicate that metal formation begins at 1400 an...The carbothermal reduction of MgO and Al_(2)O_(3) in argon flow at low pressure allows to lower the onset temperature of metal vapor formation.Thermodynamic calculations indicate that metal formation begins at 1400 and 1700 K for a primary vacuum(1000 Pa),respectively,for Mg and Al.In the experimental section,concentrated solar energy was used for the process heating in order to favor energy savings.The products of the reaction between MgO or Al_(2)O_(3) and 2 varieties of carbon(graphite,carbon black)in flowing argon atmosphere at a total pressure of around 1000 to 1600 Pa were studied using X-ray diffraction,and microstructure observations revealed the formation of metallic nanopowders with some by-products.Metallic conversions close to 45 wt%and 52 wt%,respectively,for Mg and Al,were obtained.The low conversion yield of the carbothermal reduction of MgO can be attributed to a backward reaction reforming MgO powder and to a sintering process between oxide particles at high temperature.Aluminum production challenge is to avoid formation of undesired by-products:Al_(2)O,Al_(4)C_(3) and Al-oxycarbides.Advantages and weaknesses of the used process are described and some improvements are proposed to increase metallic yields.展开更多
Electric potentials were generated from carbon nanotubes immersed in flowing vapors. The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders. These nanomaterials were disp...Electric potentials were generated from carbon nanotubes immersed in flowing vapors. The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders. These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water, ethanol and KCI. The potentials generated from these samples were measured by a voltmeter. Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes, and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors. The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors. This property of MWCNTs can advantage their application to nanoscale sensors, detectors and power cells.展开更多
基金the Programme“Investissements d’Avenir”(Investment for the Future)of the Agence Nationale de la Recherche(National Agency for Research)of the French State under award number ANR-10-LABX-22-01-SOLSTICE through the funding of the post-doctoral position of J.Puig.
文摘The carbothermal reduction of MgO and Al_(2)O_(3) in argon flow at low pressure allows to lower the onset temperature of metal vapor formation.Thermodynamic calculations indicate that metal formation begins at 1400 and 1700 K for a primary vacuum(1000 Pa),respectively,for Mg and Al.In the experimental section,concentrated solar energy was used for the process heating in order to favor energy savings.The products of the reaction between MgO or Al_(2)O_(3) and 2 varieties of carbon(graphite,carbon black)in flowing argon atmosphere at a total pressure of around 1000 to 1600 Pa were studied using X-ray diffraction,and microstructure observations revealed the formation of metallic nanopowders with some by-products.Metallic conversions close to 45 wt%and 52 wt%,respectively,for Mg and Al,were obtained.The low conversion yield of the carbothermal reduction of MgO can be attributed to a backward reaction reforming MgO powder and to a sintering process between oxide particles at high temperature.Aluminum production challenge is to avoid formation of undesired by-products:Al_(2)O,Al_(4)C_(3) and Al-oxycarbides.Advantages and weaknesses of the used process are described and some improvements are proposed to increase metallic yields.
基金Funded by the Science Foundation from the Scientific Committee of Chongqing ( No.CSTC2005BB4200).
文摘Electric potentials were generated from carbon nanotubes immersed in flowing vapors. The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders. These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water, ethanol and KCI. The potentials generated from these samples were measured by a voltmeter. Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes, and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors. The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors. This property of MWCNTs can advantage their application to nanoscale sensors, detectors and power cells.