Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrog...Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrogen enriched porous carbon(nPC)was successfully synthesized via the growth,subsequent annealing and acid etching of bimetal organic frameworks for high capacity and safe ZIHCs with exceptional rate capability.Benefiting from the mesopores for easy ion diffusion,high electrical conductivity enabled by in-situ grown carbon nanotubes matrix and residual metal Co nanoparticles for fast electron transfer,sufficient micropores and high N content(8.9 at%)with dominated pyridinic N(54%)for enhanced zinc ion storage,the resulting nPC cathodes for ZIHCs achieved high capacities of 302 and137 m Ah g^(-1) at 1 and 18 A g^(-1),outperforming most reported carbon based cathodes.Theoretical results further disclosed that pyridinic N possessed larger binding energy of-4.99 eV to chemically coordinate with Zn2+than other N species.Moreover,quasi-solid-state ZIHCs with gelatin based gel electrolytes exhibited high energy density of 157.6 Wh kg^(-1) at 0.69 kW kg^(-1),high safety and mechanical flexibility to withstand mechanical deformation and drilling.This strategy of developing pyridinic nitrogen enriched porous carbon will pave a new avenue to construct safe ZIHCs with high energy densities.展开更多
A novel adsorbent(MTZ-MOFs)was synthesized by a one-step reaction of zinc nitrate hexahydrate and 1-(2-dimethylaminoethyl)-1H-5-mercaptotetrazole to remove mercury from waste water.The results showed that MTZ-MOFs had...A novel adsorbent(MTZ-MOFs)was synthesized by a one-step reaction of zinc nitrate hexahydrate and 1-(2-dimethylaminoethyl)-1H-5-mercaptotetrazole to remove mercury from waste water.The results showed that MTZ-MOFs had excellent selectivity and repeatability for Hg(Ⅱ),the optimum pH was 3.0,the maximum adsorption capacity was 872.8 mg/g,and the process was a spontaneous exothermic reaction.The adsorption behavior was chemisorption,which conformed to the pseudo-second-order kinetic and Freundlich isothermal model.Moreover,the adsorption mechanism showed that the adsorption process mainly depended on ion exchange and chelation,and the synergistic action of S and N atoms played a key role.So,MTZ-MOFs were an efficient adsorbent for mercury ion removal.展开更多
Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,...Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,abundant active sites,and plentiful pores.Notably,satisfactory electrocatalytic performance has been achieved by MOFs-based electrocatalysts comparable to traditional electrocatalysts.State-of-the-art works about the MOFs-based electrocatalysts for hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and ORR were summarized in this review.This review comprises a series of modifying strategies of MOFs and their derivatives,from aspects of structure,composition,and morphology.Furthermore,the active sites and functional mechanisms’recognition are involved in this review expecting to provide reference for rationally designing efficient electrocatalysts.At last,the current status,challenges,and perspectives of MOFs-based electrocatalysts are also discussed.展开更多
Solid-state fiber dye-sensitized solar cells(SS-FDSSCs) have been the subject of intensive attention and development in recent years. Although this field is only in its infancy, metal–organic frameworks(MOFs) are one...Solid-state fiber dye-sensitized solar cells(SS-FDSSCs) have been the subject of intensive attention and development in recent years. Although this field is only in its infancy, metal–organic frameworks(MOFs) are one such material that has been utilized to further improve the power conversion efficiency of solar cells. In this study, MOF-integrated DSSCs were shown to have potential in the development of solar cell devices with efficiency comparable to or better than that of conventional solar cells. The power conversion efficiency(PCE) of SS-FDSSCs was improved by embedding MOF-801 into a mesoporous-TiO_(2)(mp-TiO_(2)) layer, which was used as a photoanode in SS-FDSSCs, which are inherently flexible. The PCE of the MOF-integrated SS-FDSSCs was 6.50%, which is comparable to that of the reference devices(4.19%).The MOF-801 enhanced SS-FDSSCs decreased the series resistance(R_(s)) value, resulting in effective electron extraction with improved short-circuit current density(J_(SC)), while also increasing the shunt resistance(R_(sh)) value to prevent the recombination of photo-induced electrons. The result is an improved fill factor and, consequently, a higher value for the PCE.展开更多
Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high...Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field.展开更多
Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH...Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.展开更多
The need for a net zero carbon emission future is imperative forenvironmental sustainability hence, intensive carbon fuels would need tobe replaced with less carbon emitting energy sources such as natural gastill clea...The need for a net zero carbon emission future is imperative forenvironmental sustainability hence, intensive carbon fuels would need tobe replaced with less carbon emitting energy sources such as natural gastill clean energy source such as hydrogen becomes commercialized. Asa result, this mini review discusses the use of metal organic framework(MOF) for adsorption of methane and hydrogen in specially designed tanksfor improved performance so as to increase their applicability. Herein,adsorption (delivery) capacity of selected high performing MOFs formethane and hydrogen storage were highlighted in reference to the targetsset by United States Department of Energy’s Advanced Research ProjectsAgency-Energy (ARPA-E) and Fuel Cells Technology Office. In thisregard, specific design and chemistry of MOFs for improved methane andhydrogen adsorption were highlighted accordingly. In addition, an overviewof computational and molecular studies of hypothetical MOFs was done- the various approaches used and their proficiency for construction ofspecific of crystalline structures and topologies were herewith discussed.展开更多
Li-S batteries(LSBs)have been considering as new and promising energy storage systems because of the high theoretical energy density and low price.Nevertheless,their practical application is inhibited by several facto...Li-S batteries(LSBs)have been considering as new and promising energy storage systems because of the high theoretical energy density and low price.Nevertheless,their practical application is inhibited by several factors,including poor electrical conductivity of electrode materials,greatly volumetric variation,as well as the polysulfide formation upon the cycling.To address these problems,it is imperative to develop and design effective and suitable sulfur host anode materials.Metal organic frameworks(MOFs)-based cathode materials,possessing their good conductivity and easy morphology design,have been extensively studied and exhibited enormously potential in LSBs.In this review,a comprehensive overview of MOFs-based sulfur host materials is provided,including their electrochemical reaction mechanisms,related evaluation parameters,and their performances used in LSBs in the past few years.In particular,the recent advances using in-situ characterization technologies for investigating the electrochemical reaction mechanism in LSBs are presented and highlighted.Additionally,the challenges and prospects associated with future research on MOF-related sulfur host materials are discussed.It is anticipated to offer the guidance for the identification of suitable MOFs-based sulfur cathode materials for high-performance LSBs,thereby contributing for the achievement of a sustainable and renewable society.展开更多
Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal...Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.展开更多
The reduction of CO_(2)into high value-added chemicals and fuels by a photocatalytic technology can relieve energy shortages and the environmental problems caused by greenhouse effects.In the current work,an amino-fun...The reduction of CO_(2)into high value-added chemicals and fuels by a photocatalytic technology can relieve energy shortages and the environmental problems caused by greenhouse effects.In the current work,an amino-functionalized zirconium metal organic framework(Zr-MOF)was covalently modified with different functional groups via the condensation of Zr-MOF with 2-pyridinecarboxaldehyde(PA),salicylaldehyde(SA),benzaldehyde(BA),and trifluoroacetic acid(TA),named Zr-MOF-X(X=PA,SA,BA,and TA),respectively,through the post-synthesis modification.Compared with Zr-MOF and Zr-MOF-TA,the introduction of PA,SA,or BA into the framework of Zr-MOF can not only enhance the visible-light harvesting and CO_(2)capture,but also accelerate the photogenerated charge separation and transfer,thereby improving the photocatalytic ability of Zr-MOF for CO_(2)reduction.These results indicate that the modification of Zr-MOF with electron-donating groups can promote the photocatalytic CO_(2)reduction.Therefore,the current work provides an instructive approach to improve the photocatalytic efficiency of CO_(2)reduction through the covalent modification of MOFs.展开更多
Metal organic frameworks(MOFs) are a kind of promising materials in many applications,while the fast and controllable synthesis of MOFs is still challenging.Here,taking HKUST-1 as illustration,a microplasma electroche...Metal organic frameworks(MOFs) are a kind of promising materials in many applications,while the fast and controllable synthesis of MOFs is still challenging.Here,taking HKUST-1 as illustration,a microplasma electrochemistry(MIPEC) strategy was developed to accelerate the synthesis process of MOFs with micro-plasma acting as cathode.Treating the HKUST-1 precursor solution with micro-plasma cathode could not only transfer the electrons into the solution leading to the deprotonation effect,but also generate radical species to trigger and accelerate the nucleation and growth of MOFs at the plasmaliquid interface.Thus,uniform and nanosize MOFs could be prepared within minutes.The obtained MOFs show similar excellent uranium adsorption properties compared with those obtained by other method,with a highly adsorption capability of uranium with 550 mg/g in minutes.The novel MIPEC strategy developed in this work provides an alternative for controllable synthesis of MOFs,and especially has potential application in accelerating traditional organic synthesis.展开更多
Tumor cells usually show abnormally high glycolysis rate to maintain the dynamic balance of energy.The growth of tumor cells can be affected by inhibiting the activity of pyruvate kinase(especially M2-type isozyme,PKM...Tumor cells usually show abnormally high glycolysis rate to maintain the dynamic balance of energy.The growth of tumor cells can be affected by inhibiting the activity of pyruvate kinase(especially M2-type isozyme,PKM2),the rate limiting enzyme of glycolysis.This is helpful to the treatment of tumor.Herein,metal organic frameworks(MOFs) were found to inhibit the activity of PKM2.Nanoscale ZIF-8 was synthesized by standing and ultrasonic method,respectively.The ZIF-8 has the performance of inhibiting PKM2.Further research showed that the inhibition ability was attributed to zinc ion in ZIF-8.Interestingly,the IC_(50) of ZIF-8 on PKM2 was one percent of that of zinc ion.This novel enzyme inhibitor is expected to be used in cancer therapy.展开更多
Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in op...Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in open atmospheres. Metal organic frameworks as hotspot porous materials for gases uptake and separation are considered to be potential solutions. In this review, we comprehensively summarized recent researches on metal organic frameworks for selective capture and separation of xenon and krypton. Particularly, we followed the aspects of different optimal design strategies, including optimal pore/cage size and geometry, open metal sites, ions (anions and cations), and polar functional groups for enhancing the xenon adsorption and separation performances. Meanwhile, a comparison of each strategy and the mechanisms of xenon/krypton separation were pointed out. The separation of krypton from gases mixtures by dual-bed systems was further discussed. Finally, some existing challenges and opportunities for possible real applications were proclaimed.展开更多
Metal organic frameworks (MOFs) are considered as potential materials for hydrogen storage. The hydrogen uptake is influenced by several parameters (e.g., temperature, pressure, isosteric heat of adsorption, BET surfa...Metal organic frameworks (MOFs) are considered as potential materials for hydrogen storage. The hydrogen uptake is influenced by several parameters (e.g., temperature, pressure, isosteric heat of adsorption, BET surface area). Of late, machine learning (ML) technique is used to assess the role of input features on the prediction. In the present study, a few ML models are selected, trained, and evaluated. The best and least performing models are tuned for hyperparameters. The results show that hyperparameter tuning (HPT) significantly increases the coefficient of determination (R2) of the least-performing model, the support vector regression (SVR). In contrast, the improvement in R2 with HPT is marginal for the best-performing model, the extra tree (ET), with a mean absolute error (MAE) of 0.088 wt% and R2 of 0.9945. The predictions made by the hyperparameter tuned extra tree model are explained using the Shapley additive explanations (SHAP) and contours together. The order of importance of input features in predicting the hydrogen uptake is identified as follows: temperature, pressure, isosteric heat of adsorption, and BET surface area. The SHAP dependence plots suggest that pressure is the common interactive feature among the input features in predicting hydrogen uptake. The present study helped understand the role of input features collectively in predicting the hydrogen uptake of MOFs.展开更多
Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MO...Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MOF)and their derived materials have extensively been developed as electrocatalysts for CO2 reduction owing to their unique structure including porosity,large specific surface area,and tunable chemical structures.In this review,the recent progress of MOF-based electrocatalysts for CO2 reduction was summarized and discussed.Detailed discussions mainly focus on the synthesis and mechanism of pristine MOFs and MOF-derived materials for electrocatalytic CO2 reduction.These examples are expected to provide clues to rational design and synthesis of stable and high-performance MOFs-based electrocatalysts for CO2 reduction.展开更多
The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH...The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given.展开更多
Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of str...Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.展开更多
Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still ...Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges.Herein,two functional groups with opposite electron modulation abilities(nitro and amino)were introduced into the metal–organic frameworks(MIL-101(Fe))to tune the atomically dispersed metal sites and thus regulate the enzymelike activity.Notably,the functionalization of nitro can enhance the peroxidase(POD)-like activity of MIL-101(Fe),while the amino is poles apart.Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites.Benefiting from both geometric and electronic effects,the nitro-functionalized MIL-101(Fe)with a low reaction energy barrier for the HO*formation exhibits a superior POD-like activity.As a concept of the application,a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL−1 with a limit of detection of 0.14 mU mL−1.Moreover,the detection of organophosphorus pesticides was also achieved.This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.展开更多
Nanoscale hierarchically porous metal–organic frameworks(NHP-MOFs)have received unprecedented attention in many fields owing to their integration of the strengths of nanoscale size(<1μm)and hierarchical porous st...Nanoscale hierarchically porous metal–organic frameworks(NHP-MOFs)have received unprecedented attention in many fields owing to their integration of the strengths of nanoscale size(<1μm)and hierarchical porous structure(micro-,meso-and/or macro-pores)of MOFs.This review focuses on recent advances in the main synthetic strategies for NHP-MOFs based on different metal ions(e.g.,Cu,Fe,Co,Zn,Al,Zr,and Cr),including the template method,composite technology,post-synthetic modification,in situ growth and the grind method.In addition,the mechanisms of synthesis,regulation techniques and the advantages and disadvantages of various methods are discussed.Finally,the challenges and prospects of the commercialisation of promising NHP-MOFs are also presented.The purpose of this review is to provide a road map for future design and development of NHP-MOFs for practical application.展开更多
As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemmin...As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management.展开更多
基金financially supported by the National Key R@D Program of China(Grants 2016YBF0100100 and 2016YFA0200200)National Natural Science Foundation of China(Grants 51872283,and 21805273)+8 种基金Liaoning BaiQianWan Talents Program,LiaoNing Revitalization Talents Program(Grant XLYC1807153)Natural Science Foundation of Liaoning Province(2020-MS-095)Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grants 20180510038)DICP(DICP ZZBS201708,DICP ZZBS201802,and DICP I202032)DICP&QIBEBT(Grant No.DICP&QIBEBT UN201702)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915)the Fundamental Research Funds for the Central Universities of China(N180503012)the State Key Laboratory of Fine Chemicals(KF1911)the CAS Key Laboratory of Carbon Materials(KLCMKFJJ2004)。
文摘Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrogen enriched porous carbon(nPC)was successfully synthesized via the growth,subsequent annealing and acid etching of bimetal organic frameworks for high capacity and safe ZIHCs with exceptional rate capability.Benefiting from the mesopores for easy ion diffusion,high electrical conductivity enabled by in-situ grown carbon nanotubes matrix and residual metal Co nanoparticles for fast electron transfer,sufficient micropores and high N content(8.9 at%)with dominated pyridinic N(54%)for enhanced zinc ion storage,the resulting nPC cathodes for ZIHCs achieved high capacities of 302 and137 m Ah g^(-1) at 1 and 18 A g^(-1),outperforming most reported carbon based cathodes.Theoretical results further disclosed that pyridinic N possessed larger binding energy of-4.99 eV to chemically coordinate with Zn2+than other N species.Moreover,quasi-solid-state ZIHCs with gelatin based gel electrolytes exhibited high energy density of 157.6 Wh kg^(-1) at 0.69 kW kg^(-1),high safety and mechanical flexibility to withstand mechanical deformation and drilling.This strategy of developing pyridinic nitrogen enriched porous carbon will pave a new avenue to construct safe ZIHCs with high energy densities.
基金supported by the Hubei Provincial Department of Education Science and Technology Research Program Young Talent Project,China (No. Q20201102)the National Natural Science Foundation of China (Nos. 51864042, 51804220)
文摘A novel adsorbent(MTZ-MOFs)was synthesized by a one-step reaction of zinc nitrate hexahydrate and 1-(2-dimethylaminoethyl)-1H-5-mercaptotetrazole to remove mercury from waste water.The results showed that MTZ-MOFs had excellent selectivity and repeatability for Hg(Ⅱ),the optimum pH was 3.0,the maximum adsorption capacity was 872.8 mg/g,and the process was a spontaneous exothermic reaction.The adsorption behavior was chemisorption,which conformed to the pseudo-second-order kinetic and Freundlich isothermal model.Moreover,the adsorption mechanism showed that the adsorption process mainly depended on ion exchange and chelation,and the synergistic action of S and N atoms played a key role.So,MTZ-MOFs were an efficient adsorbent for mercury ion removal.
基金supported by the National Key R&D Program of China(No.2018YFA0108300)the Overseas High-level Talents Plan of China and Guangdong Province+3 种基金the Fundamental Research Funds for the Central Universitiesthe 100 Talents Plan Foundation of Sun Yat-sen Universitythe Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2017ZT07C069)the National Natural Science Foundation of China(Nos.22075321,21821003,21890380,and 21905315).
文摘Exploring efficient and cost-saving electrocatalysts is essential to the renewable energy storage and utilization,which is still in its embryonic period.MOFs have drawn tremendous attention due to their adjustability,abundant active sites,and plentiful pores.Notably,satisfactory electrocatalytic performance has been achieved by MOFs-based electrocatalysts comparable to traditional electrocatalysts.State-of-the-art works about the MOFs-based electrocatalysts for hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and ORR were summarized in this review.This review comprises a series of modifying strategies of MOFs and their derivatives,from aspects of structure,composition,and morphology.Furthermore,the active sites and functional mechanisms’recognition are involved in this review expecting to provide reference for rationally designing efficient electrocatalysts.At last,the current status,challenges,and perspectives of MOFs-based electrocatalysts are also discussed.
基金supported by the Fundamental Research Program(PNK 7350 and PNK 7340)of the Korea Institute of Materials Science(KIMS)the National Research Foundation(NRF)grant funded by the Korean government(MEST)(2021R1A2C2014192)。
文摘Solid-state fiber dye-sensitized solar cells(SS-FDSSCs) have been the subject of intensive attention and development in recent years. Although this field is only in its infancy, metal–organic frameworks(MOFs) are one such material that has been utilized to further improve the power conversion efficiency of solar cells. In this study, MOF-integrated DSSCs were shown to have potential in the development of solar cell devices with efficiency comparable to or better than that of conventional solar cells. The power conversion efficiency(PCE) of SS-FDSSCs was improved by embedding MOF-801 into a mesoporous-TiO_(2)(mp-TiO_(2)) layer, which was used as a photoanode in SS-FDSSCs, which are inherently flexible. The PCE of the MOF-integrated SS-FDSSCs was 6.50%, which is comparable to that of the reference devices(4.19%).The MOF-801 enhanced SS-FDSSCs decreased the series resistance(R_(s)) value, resulting in effective electron extraction with improved short-circuit current density(J_(SC)), while also increasing the shunt resistance(R_(sh)) value to prevent the recombination of photo-induced electrons. The result is an improved fill factor and, consequently, a higher value for the PCE.
基金supported by National Natural Science Foundation of China(22090031,21922501,22109004)China Postdoctoral Science Foundation(2021M690319)。
文摘Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field.
基金Supported by National Natural Science Foundation of China(No.21136007,No.51302184)the National Research Fund for Fundamental Key Projects(No.2014CB260402)
文摘Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.
文摘The need for a net zero carbon emission future is imperative forenvironmental sustainability hence, intensive carbon fuels would need tobe replaced with less carbon emitting energy sources such as natural gastill clean energy source such as hydrogen becomes commercialized. Asa result, this mini review discusses the use of metal organic framework(MOF) for adsorption of methane and hydrogen in specially designed tanksfor improved performance so as to increase their applicability. Herein,adsorption (delivery) capacity of selected high performing MOFs formethane and hydrogen storage were highlighted in reference to the targetsset by United States Department of Energy’s Advanced Research ProjectsAgency-Energy (ARPA-E) and Fuel Cells Technology Office. In thisregard, specific design and chemistry of MOFs for improved methane andhydrogen adsorption were highlighted accordingly. In addition, an overviewof computational and molecular studies of hypothetical MOFs was done- the various approaches used and their proficiency for construction ofspecific of crystalline structures and topologies were herewith discussed.
基金acknowledge the National Natural Science Foundation of China(Nos.22279121 and 22209153)Key Research and Development Program of Henan Province(No.231111241400)+1 种基金Joint Fund of Scientific and Technological Research,Development Program of Henan Province(No.222301420009)the Chunhui Plan Cooperative Research Project Foundation of Ministry of Education of China(No.202200713).
文摘Li-S batteries(LSBs)have been considering as new and promising energy storage systems because of the high theoretical energy density and low price.Nevertheless,their practical application is inhibited by several factors,including poor electrical conductivity of electrode materials,greatly volumetric variation,as well as the polysulfide formation upon the cycling.To address these problems,it is imperative to develop and design effective and suitable sulfur host anode materials.Metal organic frameworks(MOFs)-based cathode materials,possessing their good conductivity and easy morphology design,have been extensively studied and exhibited enormously potential in LSBs.In this review,a comprehensive overview of MOFs-based sulfur host materials is provided,including their electrochemical reaction mechanisms,related evaluation parameters,and their performances used in LSBs in the past few years.In particular,the recent advances using in-situ characterization technologies for investigating the electrochemical reaction mechanism in LSBs are presented and highlighted.Additionally,the challenges and prospects associated with future research on MOF-related sulfur host materials are discussed.It is anticipated to offer the guidance for the identification of suitable MOFs-based sulfur cathode materials for high-performance LSBs,thereby contributing for the achievement of a sustainable and renewable society.
基金supported by the National Natural Science Foundation of China(22072034,22001050,and 21873025)the China Postdoctoral Science Foundation(2020T130147,2020M681084,and 2022M710949)+1 种基金the Postdoctoral Foundation of Heilongjiang Province(LBH-Z19059)the Natural Science Foundation of Heilongjiang Youth Fund(YQ2021B002).
文摘Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.
基金We gratefully acknowledge financial support from the Zhejiang Provincial Key R&D Project(No.2019C03118)the Programme of Introducing Talents of Discipline to Universities(No.D17008).
文摘The reduction of CO_(2)into high value-added chemicals and fuels by a photocatalytic technology can relieve energy shortages and the environmental problems caused by greenhouse effects.In the current work,an amino-functionalized zirconium metal organic framework(Zr-MOF)was covalently modified with different functional groups via the condensation of Zr-MOF with 2-pyridinecarboxaldehyde(PA),salicylaldehyde(SA),benzaldehyde(BA),and trifluoroacetic acid(TA),named Zr-MOF-X(X=PA,SA,BA,and TA),respectively,through the post-synthesis modification.Compared with Zr-MOF and Zr-MOF-TA,the introduction of PA,SA,or BA into the framework of Zr-MOF can not only enhance the visible-light harvesting and CO_(2)capture,but also accelerate the photogenerated charge separation and transfer,thereby improving the photocatalytic ability of Zr-MOF for CO_(2)reduction.These results indicate that the modification of Zr-MOF with electron-donating groups can promote the photocatalytic CO_(2)reduction.Therefore,the current work provides an instructive approach to improve the photocatalytic efficiency of CO_(2)reduction through the covalent modification of MOFs.
基金the National Natural Science Foundation of China(Nos.21976104 and 21775087)。
文摘Metal organic frameworks(MOFs) are a kind of promising materials in many applications,while the fast and controllable synthesis of MOFs is still challenging.Here,taking HKUST-1 as illustration,a microplasma electrochemistry(MIPEC) strategy was developed to accelerate the synthesis process of MOFs with micro-plasma acting as cathode.Treating the HKUST-1 precursor solution with micro-plasma cathode could not only transfer the electrons into the solution leading to the deprotonation effect,but also generate radical species to trigger and accelerate the nucleation and growth of MOFs at the plasmaliquid interface.Thus,uniform and nanosize MOFs could be prepared within minutes.The obtained MOFs show similar excellent uranium adsorption properties compared with those obtained by other method,with a highly adsorption capability of uranium with 550 mg/g in minutes.The novel MIPEC strategy developed in this work provides an alternative for controllable synthesis of MOFs,and especially has potential application in accelerating traditional organic synthesis.
基金financial support from the National Natural Science Foundation of China (Nos.61975214, U20A20335,81630053)Beijing Natural Science Foundation (Nos.4202075, 2202057, 7212208)。
文摘Tumor cells usually show abnormally high glycolysis rate to maintain the dynamic balance of energy.The growth of tumor cells can be affected by inhibiting the activity of pyruvate kinase(especially M2-type isozyme,PKM2),the rate limiting enzyme of glycolysis.This is helpful to the treatment of tumor.Herein,metal organic frameworks(MOFs) were found to inhibit the activity of PKM2.Nanoscale ZIF-8 was synthesized by standing and ultrasonic method,respectively.The ZIF-8 has the performance of inhibiting PKM2.Further research showed that the inhibition ability was attributed to zinc ion in ZIF-8.Interestingly,the IC_(50) of ZIF-8 on PKM2 was one percent of that of zinc ion.This novel enzyme inhibitor is expected to be used in cancer therapy.
基金funding support from the National Science Foundation of China(Grants Nos.22276054,U2167218,and 22006036)the Beijing Outstanding Young Scientist Program.
文摘Xenon and krypton are widespread useful noble gases in commercial lighting, lasers, electronics, and medical industry. At the same time, radioactive noble gases may proliferate from used nuclear fuel and diffuse in open atmospheres. Metal organic frameworks as hotspot porous materials for gases uptake and separation are considered to be potential solutions. In this review, we comprehensively summarized recent researches on metal organic frameworks for selective capture and separation of xenon and krypton. Particularly, we followed the aspects of different optimal design strategies, including optimal pore/cage size and geometry, open metal sites, ions (anions and cations), and polar functional groups for enhancing the xenon adsorption and separation performances. Meanwhile, a comparison of each strategy and the mechanisms of xenon/krypton separation were pointed out. The separation of krypton from gases mixtures by dual-bed systems was further discussed. Finally, some existing challenges and opportunities for possible real applications were proclaimed.
文摘Metal organic frameworks (MOFs) are considered as potential materials for hydrogen storage. The hydrogen uptake is influenced by several parameters (e.g., temperature, pressure, isosteric heat of adsorption, BET surface area). Of late, machine learning (ML) technique is used to assess the role of input features on the prediction. In the present study, a few ML models are selected, trained, and evaluated. The best and least performing models are tuned for hyperparameters. The results show that hyperparameter tuning (HPT) significantly increases the coefficient of determination (R2) of the least-performing model, the support vector regression (SVR). In contrast, the improvement in R2 with HPT is marginal for the best-performing model, the extra tree (ET), with a mean absolute error (MAE) of 0.088 wt% and R2 of 0.9945. The predictions made by the hyperparameter tuned extra tree model are explained using the Shapley additive explanations (SHAP) and contours together. The order of importance of input features in predicting the hydrogen uptake is identified as follows: temperature, pressure, isosteric heat of adsorption, and BET surface area. The SHAP dependence plots suggest that pressure is the common interactive feature among the input features in predicting hydrogen uptake. The present study helped understand the role of input features collectively in predicting the hydrogen uptake of MOFs.
基金supported by the National Natural Science Foundation of China (51772291, 21673238, 21773242)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)
文摘Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MOF)and their derived materials have extensively been developed as electrocatalysts for CO2 reduction owing to their unique structure including porosity,large specific surface area,and tunable chemical structures.In this review,the recent progress of MOF-based electrocatalysts for CO2 reduction was summarized and discussed.Detailed discussions mainly focus on the synthesis and mechanism of pristine MOFs and MOF-derived materials for electrocatalytic CO2 reduction.These examples are expected to provide clues to rational design and synthesis of stable and high-performance MOFs-based electrocatalysts for CO2 reduction.
基金supported from the Natural Science Foundation of China (Grant Nos. 21771012, 21601008 and 21576006)the National Natural Science Fund for Innovative Research Groups (Grant No. 51621003)the China Postdoctoral Science Foundation (Grant No. 2016M600879)
文摘The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given.
文摘Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.
基金The authors gratefully acknowledge the financial support of the Fundamental Research Funds for the Central Universities(CCNU20TS013)the National Natural Science Foundation of China(No.21503273)the Program of Introducing Talents of Discipline to Universities of China(111 program,B17019)and the Recruitment Program of Global Youth Experts of China.
文摘Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges.Herein,two functional groups with opposite electron modulation abilities(nitro and amino)were introduced into the metal–organic frameworks(MIL-101(Fe))to tune the atomically dispersed metal sites and thus regulate the enzymelike activity.Notably,the functionalization of nitro can enhance the peroxidase(POD)-like activity of MIL-101(Fe),while the amino is poles apart.Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites.Benefiting from both geometric and electronic effects,the nitro-functionalized MIL-101(Fe)with a low reaction energy barrier for the HO*formation exhibits a superior POD-like activity.As a concept of the application,a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL−1 with a limit of detection of 0.14 mU mL−1.Moreover,the detection of organophosphorus pesticides was also achieved.This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
基金the financial support from the National Natural Science Foundation of China(22008032,22108034,and 22102026)the Guangdong Basic and Applied Basic Research Foundation(2019A1515110706)+2 种基金the Guangdong Provincial Key Lab of Green Chemical Product Technology(GC202111)the Medical Science and Technology Research Foundation of Guangdong Province(A2021189)the Shandong Provincial Natural Science Foundation(ZR2018ZC1458)。
文摘Nanoscale hierarchically porous metal–organic frameworks(NHP-MOFs)have received unprecedented attention in many fields owing to their integration of the strengths of nanoscale size(<1μm)and hierarchical porous structure(micro-,meso-and/or macro-pores)of MOFs.This review focuses on recent advances in the main synthetic strategies for NHP-MOFs based on different metal ions(e.g.,Cu,Fe,Co,Zn,Al,Zr,and Cr),including the template method,composite technology,post-synthetic modification,in situ growth and the grind method.In addition,the mechanisms of synthesis,regulation techniques and the advantages and disadvantages of various methods are discussed.Finally,the challenges and prospects of the commercialisation of promising NHP-MOFs are also presented.The purpose of this review is to provide a road map for future design and development of NHP-MOFs for practical application.
基金funded by the Natural Science Foundation of Fujian Province(2023J05180)the President's Foundation of Minnan Normal University(KJ2021011).
文摘As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management.