期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Application of 4,4'-(2-Carboxypropane-1,3-diyl)dibenzoic Acid in Coordination Metal Complexes:Synthesis,Characterization,and Theoretical Studies
1
作者 邢媛媛 陈聪 +2 位作者 司振君 时陶 段潜 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第7期971-977,共7页
[Pb(HL)(phen)]n (1) and [Cd3L2(phen)]n (2), where phen = 1,10-phenanthroline and L = 4,4'-(2-carboxylatopropane-1,3-diyl)dibenzoate, were hydrothermally prepared and fully characterized by X-ray single-cr... [Pb(HL)(phen)]n (1) and [Cd3L2(phen)]n (2), where phen = 1,10-phenanthroline and L = 4,4'-(2-carboxylatopropane-1,3-diyl)dibenzoate, were hydrothermally prepared and fully characterized by X-ray single-crystal diffraction, infrared spectroscopy and thermogravimetric analyses. The decomposition temperature of 1 and 2 was measured to be ca. 304 and 416 ℃, respectively. The charge transfer transition based absorption of 1 and 2 was also verified by the powder scattering spectra and theoretical analyses. 展开更多
关键词 metal organic complexes SYNTHESIS theoretical analyses
下载PDF
Highly stable perovskite solar cells with a novel Ni-based metal organic complex as dopant-free hole-transporting material
2
作者 Tai Wu Linqin Wang +6 位作者 Rongjun Zhao Rongshan Zhuang Kanghong Zhao Gaoyuan Liu Jing Huang Licheng Sun Yong Hua 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期312-318,共7页
Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and... Hole-transporting material(HTM)plays a paramount role in enhancing the photovltaic performance of perovskite solar cells(PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic metal complexes in PSCs applications remains less explored.To date,most of reported HTMs require additional chemical additives(e.g.Li-TFSI,t-TBP)towards high performance,however,the introduction of additives decrease the PSCs device stability.Herein,an organic metal complex(Ni-TPA)is first developed as a dopant-free HTM applied in PSCs for its facile synthesis and efficient hole extract/transfer ability.Consequently,the dopant-free Ni-TPAbased device achieves a champion efficiency of 17.89%,which is superior to that of pristine Spiro-OMeTAD(14.25%).Furthermore,we introduce a double HTM layer with a graded energy bandgap containing a Ni-TPA layer and a CuSCN layer into PSCs,the non-encapsulated PSCs based on the Ni-TPA/CuSCN layers affords impressive efficiency up to 20.39%and maintains 96%of the initial PCE after 1000 h at a relative humidity around 40%.The results have demonstrated that metal organic complexes represent a great promise for designing new dopant-free HTMs towards highly stable PSCs. 展开更多
关键词 Perovskite solar cell Hole transporting material organic metal complex Dopant-free
下载PDF
Prominent removal of trace lead(Ⅱ)ions from polluted water by terephthalic acid reformed Al/Zn metal organic nanoflakes
3
作者 Junhua Li Lingshu Gao +6 位作者 Junmao Hong Xiaofeng Shi Sifang Kong Jingyu Wang Hassan Algadi Benbin Xu Zhanhu Guo 《Particuology》 SCIE EI CAS CSCD 2024年第1期81-88,共8页
Terephthalic acid reformed Al/Zn metal organic nanoflake was prepared and functionalized with trie-thylamine(T-AlZn).Without adding terephthalic acid,there was no product of metal organic nanoflake.T-AlZn has a remark... Terephthalic acid reformed Al/Zn metal organic nanoflake was prepared and functionalized with trie-thylamine(T-AlZn).Without adding terephthalic acid,there was no product of metal organic nanoflake.T-AlZn has a remarkable performance in removing trace lead(Ⅱ)ions(Pb^(2+)).The adsorption equipoise with the removal rate≥97%was reached within 35 min.The removal rates of T-AlZn for Pb^(2+)declined by only 16.73%after four regenerations.The adsorption of T-AlZn for Pb^(2+)follows the Langmuir isotherms model and pseudo-second-order dynamics model.The utmost adsorption competence was calculated as 215.27 mg g^(-1).The T-AlZn adsorbent exhibits a bright prospect in the adsorption for Pb^(2+)and is a considerable candidate in the disposal of industrial sewage. 展开更多
关键词 metal organic complex Nanoflake Trace level Pb^(2+) ADSORPTION
原文传递
SnO_(2)/metal organic complex composite derived from low-temperature activated metal organic complex for advanced lithium storage
4
作者 Gui-Long Liu Zi-Han Zhao +7 位作者 Jin-Ke Shen Zi-Bo Zhao Nai-Teng Wu Dong-Lei Guo Wei-Wei Yuan Yong Liu Ye-Hua Su Xian-Ming Liu 《Rare Metals》 SCIE EI CAS CSCD 2024年第7期3032-3043,共12页
Sn-based metal organic complexes with coordination bonds,multi-active sites,and high theoretical capacity have attracted much attention as promising anodes for lithium ion batteries.However,the low electrical conducti... Sn-based metal organic complexes with coordination bonds,multi-active sites,and high theoretical capacity have attracted much attention as promising anodes for lithium ion batteries.However,the low electrical conductivity and huge volume changes restricted their electrochemical stability and practical utilization.Herein,Snbased anode with superior electrochemical performance,including a high reversible capacity of 1050.1 mAh·g^(-1)at 2 A·g^(-1)and a stable capacity of 1105.5 mAh·g^(-1)after 500 cycles at 1 A·g^(-1),was fabricated via a low-temperature calcination strategy from Sn metal organic complexes.The low-temperature calcination process regulates Sn-O bond and prevents the agglomeration of SnO_(2),generating highly dispersed SnO_(2) decorated metal organic complexes and providing sufficient active sites for ion storage.Ex situ characterizations expound that the undecomposed Sn-based metal organic complexes could be transformed into SnO_(2) during lithiation and delithiation,which enhances the electrical conductivity and induces a strong pseudo-capacitive behavior,accelerating the electrochemical kinetics;the multiple solid electrolyte interface with inflexible LiF and flexible ROCO_(2)Li buffers the volume variation of the electrode,resulting in its high electrochemical stability.This work provides a simple strategy for preparing excellent Sn-based anodes from metal organic complexes and reveals the lithium storage mechanism of the prepared Snbased anode. 展开更多
关键词 metal organic complex Lithium ion battery Electrochemical activation Low-temperature activation Partial decomposition
原文传递
Polyoxometalate-based metal-organic complexes constructed from a new bis-pyrimidine-amide ligand with high capacitance performance and selectivity for the detection of Cr(Ⅵ)
5
作者 Qianqian Liu Junjun Lu +4 位作者 Hongyan Lin Xiuli Wang Zhihan Chang Yongzhen Chen Yuchen Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第9期4389-4394,共6页
In this paper,three new polyoxometalates(POM)-based metal–organic complexes constructed from a new semi-rigid organic ligand N,N'-bis(4-pyrimidinecarboxamido)-1,2-cyclohexane(4-bpmah)H_(2)[Cu(4-bpmah)_(2)(SiMo_(1... In this paper,three new polyoxometalates(POM)-based metal–organic complexes constructed from a new semi-rigid organic ligand N,N'-bis(4-pyrimidinecarboxamido)-1,2-cyclohexane(4-bpmah)H_(2)[Cu(4-bpmah)_(2)(SiMo_(12)O_(40))(H_(2)O)_(2)]·2H_(2)O(1),H[Cu(4-bpmah)_(2)(PMo_(12)O_(4)0)(H_(2)O)_(2)]·2H_(2)O(2)and[Cu(4-bpmah)(H_(2)O)_(2)]·[Cu_(2)(TeMo_(6)O_(24))(H_(2)O)_(10)]·4H_(2)O(3)were synthesized by hydrothermal method.Single crystal X-ray analyses showed that complexes 1 and 2 were isostructural,in which the isolated Keggin-type[SiMo1_(2)O_(40)]^(4–)/[PMo_(12)O_(40)]^(3–)anions and[Cu(4-bpmah)_(2)(H_(2)O)2]^(2n+)units were expanded into 3D supramolecular structures through hydrogen bond interactions.In complex 3,the 1D[Cu(4-bpmah)(H_(2)O)_(2)]^(2n+)metal–organic chains and isolated[Cu_(2)(TeMo_(6)O_(24))(H_(2)O)_(10)]^(2n–)units were expanded into a 3D supramolecular framework by the hydrogen bond interactions.In this paper,carbon cloth working electrodes composited by the title complexes(1/CC,2/CC and 3/CC)were prepared and used as electrodes for supercapacitors.The performance of supercapacitors as well as the influence of electrolyte solution and title complexes quality load on the performance of supercapacitors were studied.Furthermore,the electrochemistry and electrocatalytic behaviors of complexes 1–3 bulk-modified carbon paste electrodes(1-CPE,2-CPE and 3-CPE)toward the reduction of KBrO_(3),KNO_(2),Cr(Ⅵ),as well as their sensing behaviors on Cr(Ⅵ)were investigated. 展开更多
关键词 POLYOXOmetalATES metalorganic complexes Supercapacitor ELECTROCATALYSIS Electrochemical sensors
原文传递
Highly efficient removal of trace lead(Ⅱ)from wastewater by 1,4-dicarboxybenzene modified Fe/Co metal organic nanosheets 被引量:2
6
作者 Junmao Hong Le Kang +5 位作者 Xiaofeng Shi Renbo Wei Xianmin Mai Duo Pan Nithesh Naik Zhanhu Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第3期212-218,共7页
A novel Fe/Co metal organic complex nanosheet modified by 1,4-dicarboxybenzene(BDC),i.e.,FeCo@BDC,was prepared,and highly efficient removal performance for trace lead(Ⅱ)(Pb^(2+))was demonstrated in the neutral aqueou... A novel Fe/Co metal organic complex nanosheet modified by 1,4-dicarboxybenzene(BDC),i.e.,FeCo@BDC,was prepared,and highly efficient removal performance for trace lead(Ⅱ)(Pb^(2+))was demonstrated in the neutral aqueous solutions.The removal rates were higher than 95%and the adsorption was equilibrated in 15 min.The isotherms and kinetics for the adsorption Pb^(2+)by the FeCo@BDC adsorbents followed Langmuir model and pseudo-second-order model,respectively.The maximum adsorption capacity was 220.48 mg g^(-1).The FeCo@BDC adsorbents also own a prominent regeneration performance.The prominent performance of in the removal of trace Pb^(2+)makes FeCo@BDC an ideal candidate as commercial adsorbent materials. 展开更多
关键词 metal organic complex NANOSHEET Trace level Lead(Ⅱ) Adsorption
原文传递
Efficient perovskite solar cells employing a solution-processable copper phthalocyanine as a hole-transporting material 被引量:1
7
作者 Xiaoqing Jiang Ze Yu +4 位作者 Jianbo Lai Yuchen Zhang Ning Lei Dongping Wang Licheng Sun 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第3期423-430,共8页
The development of alternative low-cost and high-performing hole-transporting materials(HTMs) is of great significance for the potential large-scale application of perovskite solar cells(PSCs) in the future.Here,a fac... The development of alternative low-cost and high-performing hole-transporting materials(HTMs) is of great significance for the potential large-scale application of perovskite solar cells(PSCs) in the future.Here,a facilely synthesized solution-processable copper tetra-(2,4-dimethyl-3-pentoxy) phthalocyanine(CuPc-DMP) via only two simple steps,has been incorporated as a hole-transporting material(HTM) in mesoscopic perovskite solar cells(PSCs).The optimized devices based on such a HTM afford a very competitive power conversion efficiency(PCE) of up to 17.1%measured at 100 mW cm^(-2) AM 1.5G irradiation,which is on par with that of the well-known 2,2',7,7'-tetrakis(N'N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene(spiro-OMeTAD)(16.7%) under equivalent conditions.This is,to the best of our knowledge,the highest value reported so far for metal organic complex-based HTMs in PSCs.The advantages of this HTM observed,such as facile synthetic procedure,superior hole transport characteristic,high photovoltaic performance together with the feasibility of tailoring the molecular structure would make solution-processable copper phthalocyanines as a class of promising HTM that can be further explored in PSCs.The present finding highlights the potential application of solution processed metal organic complexes as HTMs for cost-effective and high-performing PSCs. 展开更多
关键词 solution-processable copper phthalocyanine metal organic complex low-cost hole-transporting material perovskite solar cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部