期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two-dimensional metal oxide nanosheets for rechargeable batteries 被引量:2
1
作者 Jun Mei Ting Liao Ziqi Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期117-127,共11页
Two-dimensional(2D) metal oxide nanosheets have attracted much attention as potential electrode materials for rechargeable batteries in recent years. This is primarily due to their natural abundance, environmental c... Two-dimensional(2D) metal oxide nanosheets have attracted much attention as potential electrode materials for rechargeable batteries in recent years. This is primarily due to their natural abundance, environmental compatibility, and low cost as well as good electrochemical properties. Despite the fact that most metal oxides possess low conductivity, the introduction of some conductive heterogeneous components, such as nano-carbon, carbon nanotubes(CNTs), and graphene, to form metal oxide-based hybrids,can effectively overcome this drawback. In this mini review, we will summarize the recent advances of three typical 2D metal oxide nanomaterials, namely, binary metal oxides, ternary metal oxides, and hybrid metal oxides, which are used for the electrochemical applications of next-generation rechargeable batteries, mainly for lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs). Hence, this review intends to functionalize as a good reference for the further research on 2D nanomaterials and the further development of energy-storage devices. 展开更多
关键词 2D nanomaterials metal oxide Lithium-ion battery Rechargeable batteries Sodium-ion battery
下载PDF
Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2 被引量:4
2
作者 Mengyun Wang Shengbo Zhang +5 位作者 Mei Li Aiguo Han Xinli Zhu Qingfeng Ge Jinyu Han Hua Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第5期813-823,共11页
Novel,hierarchical,flower-like Ag/Cu2O and Au/Cu2O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO2.Cu2O nanospheres with a uniform size of... Novel,hierarchical,flower-like Ag/Cu2O and Au/Cu2O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO2.Cu2O nanospheres with a uniform size of^180 nm were initially synthesized.Thereafter,Cu2O was used as a sacrificial template to prepare a series of Ag/Cu2O composites through galvanic replacement.By varying the Ag/Cu atomic ratio,Ago.12/Cu2O,having a hierarchical,flower-like nanostructure with intersecting Ag nanoflakes encompassing an inner Cu2O sphere,was prepared.The as-prepared Ag/Cu2O samples presented higher Faradaic efficiencies(FE)for CO and relatively suppressed H2 evolution than the parent Cu2O nanospheres due to the combination of Ag with Cu2O in the former.Notably,the highest CO evolution rate was achieved with Ago.12/Cu2O due to the larger electroactive surface area furnished by the hierarchical structure.The same hier-archical flower-like structure was also obtained for the Auo./Cu2O composite,where the FEco(10%)was even higher than that of Ago.12/Cu2O.Importantly,the results reveal that Ago.12/Cu2O and Auo./Cu2O both exhibit remarkably improved stability relative to Cu2O.This study presents a facile method of developing hierarchical metal-oxide composites as fficient and stable electrocatalysts for the electrochemical reduction of CO2. 展开更多
关键词 bimetallic nanostructure hierarchical metal/oxide nanomaterial galvanic replacement electrochemical reduction of CO2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部