Nickel was deposited by ac electrolysis deposition in the pores of the porous oxide film of Al produced by anodizing in phosphoric acid. Ultrafine rod-shaped Ni particles were formed in the pores. At the same time a f...Nickel was deposited by ac electrolysis deposition in the pores of the porous oxide film of Al produced by anodizing in phosphoric acid. Ultrafine rod-shaped Ni particles were formed in the pores. At the same time a film of Ni oxide precursor was developed on the surface of the porous oxide film. The Ni particles and the Ni oxide precursor were examined by SEM, TEM and X-ray diffraction. The thickness of the barrier layer of the porous oxide film was thin and it attributed to the formation of the metal particles, while the formation of the oxide precursor was associated with the surface pits which were developed in the pretreatment of Al.展开更多
Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this ...Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this contribution,the combustion properties of the metal species are studied by means of the high-speed photography technique and the non-contact wavelet-based measurement of flame temperature distribution. The combustion process of the Al,Mg and Mg/Al samples shows both gas phase reaction and surface oxidation,which yield volatile and nonvolatile products,corresponding to the oxide and suboxide respectively. However,the combustion of B and Ni shows only gas phase reaction,due to their high melting point as well as high enthalpy of vaporization. In addition to the experiments,a hypothetical combustion model has been proposed to clarify the combustion characteristics of metal species in modified double-base propellants.展开更多
Inert metal explosive,a new kind of explosive,is a mixture of high explosive and inert metal particle.When this kind of explosive is detonated,an inert metal particle flow will be formed by the ex-plosive product driv...Inert metal explosive,a new kind of explosive,is a mixture of high explosive and inert metal particle.When this kind of explosive is detonated,an inert metal particle flow will be formed by the ex-plosive product driving.To determine the characteristics of the movement of the metal particle flow,a series of aluminium plates were designed to be the targets on which the metal particle flow impacted.The test result was presented and a numerical model was set up to analyze the impact of the high speed inert metal particles on aluminium plate.Based on the numerical analysis,the relationship between the characteristic of the mark on the target plate and the initial condition of the inert metal particles was pro-posed.From the analysis of the impact on target plates,more information about the movement of the metal particles could be reconstructed.展开更多
This paper analyzes the oxidation law of metal particles and proposes a new oxidation reaction rate model,based on measurements of thermogravimetric-mass spectrometer(TG-MS),X-ray diffractometer(XRD)and scanning elect...This paper analyzes the oxidation law of metal particles and proposes a new oxidation reaction rate model,based on measurements of thermogravimetric-mass spectrometer(TG-MS),X-ray diffractometer(XRD)and scanning electron microscope(SEM).The model is named EBM(egg broken model)with a formula of exponential law.According to the model,the aluminum particles do not react in a spherical shape,but crack and the melted metal inside flows out to form a new nonspherical surface and the reaction rate is still determined by the surface area.The model is verified with heating rates of 5℃/min,10℃/min and 25℃/min,and with particle size of 1–2μm,8–9μm and 20–22μm.Many models are based on spherical hypothesis and the new model gives a different physical illustration to explain oxidation progress of metal particles.The new model gives an exponential law,which fits the experimental data well,and it may be useful to understand oxidation mechanism of metal particles.展开更多
The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and ...The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and negative nanosecond voltage pulses with an amplitude of tens of kilovolts were applied.Time-resolved images of the discharge development were taken with a fourchannel Intensified Charge Coupled Device(ICCD)camera.The minimum delay between the camera channels could be as short as≈0.1 ns.This made it possible to study the gap breakdown process with subnanosecond resolution.It was observed that a wide-diameter streamer develops from the high-voltage pointed electrode.The ionization processes near the grounded pin electrode started when the streamer crossed half of the gap.After bridging the gap by the streamer,a diffuse discharge was formed.The development of spark leaders from bright spots on the surface of the pointed electrodes was observed at the next stage.It was found that the rate of development of the spark leader is an order of magnitude lower than that of the wide-diameter streamer.Long thin luminous tracks were observed against the background of a discharge plasma glow.It has been established that the tracks are adjacent to brightly glowing spots on the electrodes and are associated with the flight of small particles.展开更多
The activity of two Cu/SiO2 catalysts prepared by the chemisorption hydrolysis technique has been tested in the hydrogenation reaction of 3-methyl-cyclohexanone. Both catalysts were found to be very active at 60 ℃ an...The activity of two Cu/SiO2 catalysts prepared by the chemisorption hydrolysis technique has been tested in the hydrogenation reaction of 3-methyl-cyclohexanone. Both catalysts were found to be very active at 60 ℃ and 1 atm of H2. Characterization of the materials by FT-IR of adsorbed CO and TEM put in light the presence of well formed Cu cristallites. By assuming a cuboctahedral model we could show that the hydrogenation activity is linked to high coordination sites on the metal particle. A comparison is also reported with a sample prepared by ammonia evaporation that was found to be inactive in the hydrogenation reaction under the same experimental conditions.展开更多
Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the inf...Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the influence of the presence of finely dispersed metallic particles in CG on the microstructure and compressive strength of cement paste has been studied.The results show that the higher the replacement of CG is,the lower the compressive strength of cement mortar is.However,the long-term strength of the specimens with 10% CG,especially after being cured for 3 months,approached to that of the plain mortar.Its mechanism was studied by an electron probe X-ray microanalyzer (EPXMA).The results indicate that a small quantity of Fe(OH) 3·nH 2O slowly formed from Fe 2O 3 in the presence of Ca(OH) 2, free CaO and MgO of the clinker also slowly hydrated and formed Ca(OH) 2 and Mg(OH) 2 respectively,so the hardened cement paste became more compact.展开更多
A conductive polymeric composite containing in situ ultra-fine metal particles is prepared by melt blending. Incorporation of elastomeric nano-particles and carbon nanotubes hinders the coalescing of metal particles a...A conductive polymeric composite containing in situ ultra-fine metal particles is prepared by melt blending. Incorporation of elastomeric nano-particles and carbon nanotubes hinders the coalescing of metal particles and causes a shift to the breakup direction in the breakup/coalescence equilibrium of metal particles. The prime metal particles (about 26 μm) are in situ converted into the ultra-fine metal particles (UFMP, about 932 nm). The network of carbon nanotubes has been improved due to in situ ultra-fine metal particles and the percolation threshold of the composite with 1.96 vol% UFMP is only 0.25 vol% carbon nanotubes.展开更多
In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the ...In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little.展开更多
As a new method to protect the spark gap from metal particle contamination, the effect of the metal inserted insulator on the controlling behavior of metal particles was investigated in a quasi-uniform electric field....As a new method to protect the spark gap from metal particle contamination, the effect of the metal inserted insulator on the controlling behavior of metal particles was investigated in a quasi-uniform electric field. Considering that the inserted metal electrodes can decrease the electric field around the insulator and divert the electrostatic force away from the insulator, the method can be used to prevent the particles from moving toward the insulator so as to reduce the possibility of a breakdown. The inserted metal electrodes can reverse the direction of the particles' horizontal motion. A study on the insulator shape indicates that the inserted metal electrodes can repulse the particle and improve the particle lifting voltage significantly near the vertical surface of the insulator or ribbed insulator. For the insulator with a tilting surface the inserted metal electrodes have little influence on the particle motion. In addition, the size of the inserted electrodes shows a significant effect on the control of particle motion.展开更多
Based on a first-principles approach,we establish an alternating-current(AC) relaxation theory for a rotating metallic particle with complex dielectric constant εα=εα-iσα/ω0.Here εα is the real part,σα th...Based on a first-principles approach,we establish an alternating-current(AC) relaxation theory for a rotating metallic particle with complex dielectric constant εα=εα-iσα/ω0.Here εα is the real part,σα the conductivity,ω0 the angular frequency of an AC electric field,and i=-11/2.Our theory yields an accurate interparticle force,which is in good agreement with the existing experiment.The agreement helps to show that the relaxations of two kinds of charges,namely,surface polarized charges(described by εα) and free charges(corresponding to σα),contribute to the unusually large reduction in the attracting interparticle force.This theory can be adopted to determine the relaxation time of dynamic particles in various fields.展开更多
Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle tem- perature decreased to the critical temperature for a hot particle...Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle tem- perature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial tem- peratures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temper- ature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.展开更多
Nano fluid is considered to be a class of high efficient heat transfer fluid created by dispersing some special solid nanoparticles (normally less than 100 nm) in traditional heat transfer fluid. The present experimen...Nano fluid is considered to be a class of high efficient heat transfer fluid created by dispersing some special solid nanoparticles (normally less than 100 nm) in traditional heat transfer fluid. The present experiment was conducted aiming at investigating the forced heat transfer characteristics of aqueous copper (Cu) nanofluid at varying concentration of Cu nano-particles in different flow regimes (300<Re≤16 000). The forced convective heat transfer enhancement is available both in the laminar and turbulent flow with increasing the concentration. Especially, the enhancement rate increases dramatically in laminar flow regime, for instance, the heat transfer coefficient of Cu/water nanofluid increases by two times at around Re=2 000 compared with that of base fluid water, and averagely increases by 62% at 1% volume fraction. However, the heat transfer coefficient of Cu/water decreases sharply in the transition flow regime. Furthermore, it has the trend that the heat transfer coefficient displays worse with increasing the concentration.展开更多
Susceptibility of patients with chronic obstructive pulmonary disease(COPD)to cardiovascular autonomic dysfunction asso-ciated with exposure to metals in ambient fine particles(PM2.5,particulate matter with aerodynami...Susceptibility of patients with chronic obstructive pulmonary disease(COPD)to cardiovascular autonomic dysfunction asso-ciated with exposure to metals in ambient fine particles(PM2.5,particulate matter with aerodynamic diameter≤2.5µm)remains poorly evidenced.Based on the COPDB(COPD in Beijing)panel study,we aimed to compare the associations of heart rate(HR,an indicator of cardiovascular autonomic function)and exposure to metals in PM2.5 between 53 patients with COPD and 82 healthy controls by using linear mixed-effects models.In all participants,the HR levels were significantly associated with interquartile range increases in the average concentrations of Cr,Zn,and Pb,but the strength of the associations differed by exposure time(from 1.4%for an average 9 days(d)Cr exposure to 3.5%for an average 9 d Zn exposure).HR was positively associated with the average concentrations of PM2.5 and certain metals only in patients with COPD.Associations between HR and exposure to PM2.5,K,Cr,Mn,Ni,Cu,Zn,As,and Se in patients with COPD significantly differed from those in health controls.Furthermore,association between HR and Cr exposure was robust in COPD patients.In conclusion,our findings indicate that COPD could exacerbate difference in HR following exposure to metals in PM2.5.展开更多
A novel method based on plastic processing and equipment for preparing ultra-fine metal fibers and particles is reported.With this new method,metal fibers and particles can both be produced on the same equipment and t...A novel method based on plastic processing and equipment for preparing ultra-fine metal fibers and particles is reported.With this new method,metal fibers and particles can both be produced on the same equipment and the surfaces of the fibers and particles can be protected from oxidation by the polymers or solvents during the preparation process.Metal-alloy powders with lower melt point were filled into polymer by an extruder,followed by a die-drawing process at a temperature lower than the melt temperature of the metal alloy.Metal fibers or particles were obtained after the polymer matrix was washed away.Metal alloy fibers can be obtained when a polymer that strongly interacts with metal alloy,such as a special polyvinyl alcohol with a low alcoholysis degree,is used as the polymer matrix.Metal-alloy particles can be obtained when a polymer with weak interaction with metal alloy,such as polyethylene(PE),is used as the polymer matrix.Based on the principle of this new method,it is possible to produce finer or even nano-sized metal fibers and particles with higher melting points.展开更多
Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste(MSW). In this study, we investigated fine part...Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste(MSW). In this study, we investigated fine particles of 〈 2 mm, which are small fractions in MSW but constitute a significant component of the total heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of 〈 10 μm within the fine particles. Zn–Cu, Pb–Fe and Fe–Mn–Cr had significant correlations in terms of spatial distribution. The overlapped enrichment, spatial association, and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions(such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction(such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.展开更多
Due to the higher reliability and small ground space requirement, compressed GIS (gas insulated substation) has found extensive applications in urban areas and developing countries. The major parts of GIS is the gas...Due to the higher reliability and small ground space requirement, compressed GIS (gas insulated substation) has found extensive applications in urban areas and developing countries. The major parts of GIS is the gas insulated busducts, circuit breakers, isolators, etc.. The voltage withstand capability of SF6 (sulphur hexafluoride) busduct is strongly dependent on field perturbations such as those caused by conductor surface imperfections and by conducting particle contaminants which arise due to manufacturing process, mechanical vibrations, moving parts of system etc.. Contamination can create insulation problems at operating fields. An optimized design of GIS by varying the inner and outer diameter to 89 mm and 241 mm is considered for analysis and compared with a single phase enclosure with outer diameter as 152 mm and inner conductor diameter of 55 mm with aluminum and copper particles of size 10 mm in length and 0.25 mm in radius present on the enclosure. The results have been compared on the extent of particle movement for the same condition of the gas and particle geometry. Monte Carlo simulation is also carried out for determining the motion of particles in axial and radial directions. The random solid angle is changed from 1 to 0.5 degrees to take into account more smooth end profile of the particle. The simulation results have been presented and analyzed.展开更多
Metal particle contamination in a gas-insulated switchgear(GIS)or a gas-insulated transmission line(GIL)is an important factor leading to the decline of insulation performance.Exploring the deterioration mechanism and...Metal particle contamination in a gas-insulated switchgear(GIS)or a gas-insulated transmission line(GIL)is an important factor leading to the decline of insulation performance.Exploring the deterioration mechanism and suppression measures of metal particles on insulation is a key technical problem in enhancing the dielectric strength of GIS/GIL equipment.In this paper,the charge and motion characteristics of metal particles are first introduced.The gas gap breakdown caused by free metal particles and the surface flashover caused by metal particles near or adsorbed on the insulator are then analyzed according to different particle motion patterns and spatial locations.Subsequently in terms of operation managements,the existing methods of particle detection are analyzed.In addition,the main inhibition methods of metal particles are introduced from three aspects:particle trap,insulator surface treatment and electrode coating.Finally,the prospects in the future research on particle pollution in GIS/GIL are also pointed out.展开更多
At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved ...At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles(PM). Different leafy vegetables(lettuces and cabbages) cultivated in RHIZOtest? devices were, therefore, exposed in a greenhouse for 5, 10 and 15 days to various Pb O PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves(up to 7392 mg/kg dry weight(DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth(up to 68.2% in lettuce) and net photosynthesis(up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities(in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption.展开更多
基金National Natural Science Foundation of China!No. 59774031
文摘Nickel was deposited by ac electrolysis deposition in the pores of the porous oxide film of Al produced by anodizing in phosphoric acid. Ultrafine rod-shaped Ni particles were formed in the pores. At the same time a film of Ni oxide precursor was developed on the surface of the porous oxide film. The Ni particles and the Ni oxide precursor were examined by SEM, TEM and X-ray diffraction. The thickness of the barrier layer of the porous oxide film was thin and it attributed to the formation of the metal particles, while the formation of the oxide precursor was associated with the surface pits which were developed in the pretreatment of Al.
基金Supported by the Science and Technology on Combustion and Explosion Laboratory Foundation(9140C350319140C35161)
文摘Metal particles such as aluminum( Al),magnesium( Mg),boron( B) and nickel( Ni),as well as Mg/Al alloy( Mg/Al = 3/4) are currently the most widely used ingredients in modified doublebase propellants. In this contribution,the combustion properties of the metal species are studied by means of the high-speed photography technique and the non-contact wavelet-based measurement of flame temperature distribution. The combustion process of the Al,Mg and Mg/Al samples shows both gas phase reaction and surface oxidation,which yield volatile and nonvolatile products,corresponding to the oxide and suboxide respectively. However,the combustion of B and Ni shows only gas phase reaction,due to their high melting point as well as high enthalpy of vaporization. In addition to the experiments,a hypothetical combustion model has been proposed to clarify the combustion characteristics of metal species in modified double-base propellants.
基金Supported by National Natural Science Foundation of China (No.10772032).
文摘Inert metal explosive,a new kind of explosive,is a mixture of high explosive and inert metal particle.When this kind of explosive is detonated,an inert metal particle flow will be formed by the ex-plosive product driving.To determine the characteristics of the movement of the metal particle flow,a series of aluminium plates were designed to be the targets on which the metal particle flow impacted.The test result was presented and a numerical model was set up to analyze the impact of the high speed inert metal particles on aluminium plate.Based on the numerical analysis,the relationship between the characteristic of the mark on the target plate and the initial condition of the inert metal particles was pro-posed.From the analysis of the impact on target plates,more information about the movement of the metal particles could be reconstructed.
基金financially supported by the joint fund of National Natural Science Foundation and China Academy of Engineering Physics(NSAF)under grant No.U1530157。
文摘This paper analyzes the oxidation law of metal particles and proposes a new oxidation reaction rate model,based on measurements of thermogravimetric-mass spectrometer(TG-MS),X-ray diffractometer(XRD)and scanning electron microscope(SEM).The model is named EBM(egg broken model)with a formula of exponential law.According to the model,the aluminum particles do not react in a spherical shape,but crack and the melted metal inside flows out to form a new nonspherical surface and the reaction rate is still determined by the surface area.The model is verified with heating rates of 5℃/min,10℃/min and 25℃/min,and with particle size of 1–2μm,8–9μm and 20–22μm.Many models are based on spherical hypothesis and the new model gives a different physical illustration to explain oxidation progress of metal particles.The new model gives an exponential law,which fits the experimental data well,and it may be useful to understand oxidation mechanism of metal particles.
基金performed within the framework of the State assignment of the IHCE SB RAS,project No.FWRM-2021-0014.
文摘The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and negative nanosecond voltage pulses with an amplitude of tens of kilovolts were applied.Time-resolved images of the discharge development were taken with a fourchannel Intensified Charge Coupled Device(ICCD)camera.The minimum delay between the camera channels could be as short as≈0.1 ns.This made it possible to study the gap breakdown process with subnanosecond resolution.It was observed that a wide-diameter streamer develops from the high-voltage pointed electrode.The ionization processes near the grounded pin electrode started when the streamer crossed half of the gap.After bridging the gap by the streamer,a diffuse discharge was formed.The development of spark leaders from bright spots on the surface of the pointed electrodes was observed at the next stage.It was found that the rate of development of the spark leader is an order of magnitude lower than that of the wide-diameter streamer.Long thin luminous tracks were observed against the background of a discharge plasma glow.It has been established that the tracks are adjacent to brightly glowing spots on the electrodes and are associated with the flight of small particles.
文摘The activity of two Cu/SiO2 catalysts prepared by the chemisorption hydrolysis technique has been tested in the hydrogenation reaction of 3-methyl-cyclohexanone. Both catalysts were found to be very active at 60 ℃ and 1 atm of H2. Characterization of the materials by FT-IR of adsorbed CO and TEM put in light the presence of well formed Cu cristallites. By assuming a cuboctahedral model we could show that the hydrogenation activity is linked to high coordination sites on the metal particle. A comparison is also reported with a sample prepared by ammonia evaporation that was found to be inactive in the hydrogenation reaction under the same experimental conditions.
文摘Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the influence of the presence of finely dispersed metallic particles in CG on the microstructure and compressive strength of cement paste has been studied.The results show that the higher the replacement of CG is,the lower the compressive strength of cement mortar is.However,the long-term strength of the specimens with 10% CG,especially after being cured for 3 months,approached to that of the plain mortar.Its mechanism was studied by an electron probe X-ray microanalyzer (EPXMA).The results indicate that a small quantity of Fe(OH) 3·nH 2O slowly formed from Fe 2O 3 in the presence of Ca(OH) 2, free CaO and MgO of the clinker also slowly hydrated and formed Ca(OH) 2 and Mg(OH) 2 respectively,so the hardened cement paste became more compact.
文摘A conductive polymeric composite containing in situ ultra-fine metal particles is prepared by melt blending. Incorporation of elastomeric nano-particles and carbon nanotubes hinders the coalescing of metal particles and causes a shift to the breakup direction in the breakup/coalescence equilibrium of metal particles. The prime metal particles (about 26 μm) are in situ converted into the ultra-fine metal particles (UFMP, about 932 nm). The network of carbon nanotubes has been improved due to in situ ultra-fine metal particles and the percolation threshold of the composite with 1.96 vol% UFMP is only 0.25 vol% carbon nanotubes.
基金supported by the Science and Technology Development Fund (2015B0201025)the key subject "Computational Solid Mechanics" of China Academy of Engineering Physics+1 种基金the National Outstanding Young Scientists Foundation of China (11225213)the National Natural Science Foundation of China (11521062,11602258)
文摘In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little.
基金National Natural Science Foundation of China(No.50637010)
文摘As a new method to protect the spark gap from metal particle contamination, the effect of the metal inserted insulator on the controlling behavior of metal particles was investigated in a quasi-uniform electric field. Considering that the inserted metal electrodes can decrease the electric field around the insulator and divert the electrostatic force away from the insulator, the method can be used to prevent the particles from moving toward the insulator so as to reduce the possibility of a breakdown. The inserted metal electrodes can reverse the direction of the particles' horizontal motion. A study on the insulator shape indicates that the inserted metal electrodes can repulse the particle and improve the particle lifting voltage significantly near the vertical surface of the insulator or ribbed insulator. For the insulator with a tilting surface the inserted metal electrodes have little influence on the particle motion. In addition, the size of the inserted electrodes shows a significant effect on the control of particle motion.
基金Project supported by the National Natural Science Foundation of China(Grant No.11222544)the Fok Ying Tung Education Foundation(Grant No.131008)+1 种基金the Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0121)the National Key Basic Research Program of China(Grant No.2011CB922004)
文摘Based on a first-principles approach,we establish an alternating-current(AC) relaxation theory for a rotating metallic particle with complex dielectric constant εα=εα-iσα/ω0.Here εα is the real part,σα the conductivity,ω0 the angular frequency of an AC electric field,and i=-11/2.Our theory yields an accurate interparticle force,which is in good agreement with the existing experiment.The agreement helps to show that the relaxations of two kinds of charges,namely,surface polarized charges(described by εα) and free charges(corresponding to σα),contribute to the unusually large reduction in the attracting interparticle force.This theory can be adopted to determine the relaxation time of dynamic particles in various fields.
基金supported by the National Basic Research Program of China(2012CB719702)the International Science&Technology Cooperation Program of China(2014DFG72300)the Fundamental Research Funds for the Central University(WK2320000014)
文摘Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle tem- perature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial tem- peratures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temper- ature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education, Science and Technology (No.2012-0004544)
文摘Nano fluid is considered to be a class of high efficient heat transfer fluid created by dispersing some special solid nanoparticles (normally less than 100 nm) in traditional heat transfer fluid. The present experiment was conducted aiming at investigating the forced heat transfer characteristics of aqueous copper (Cu) nanofluid at varying concentration of Cu nano-particles in different flow regimes (300<Re≤16 000). The forced convective heat transfer enhancement is available both in the laminar and turbulent flow with increasing the concentration. Especially, the enhancement rate increases dramatically in laminar flow regime, for instance, the heat transfer coefficient of Cu/water nanofluid increases by two times at around Re=2 000 compared with that of base fluid water, and averagely increases by 62% at 1% volume fraction. However, the heat transfer coefficient of Cu/water decreases sharply in the transition flow regime. Furthermore, it has the trend that the heat transfer coefficient displays worse with increasing the concentration.
基金the National Natural Science Foundation of China(41121004,21190051,41421064 and 81571130100)the National Basic Research Program of China(2015CB553401)。
文摘Susceptibility of patients with chronic obstructive pulmonary disease(COPD)to cardiovascular autonomic dysfunction asso-ciated with exposure to metals in ambient fine particles(PM2.5,particulate matter with aerodynamic diameter≤2.5µm)remains poorly evidenced.Based on the COPDB(COPD in Beijing)panel study,we aimed to compare the associations of heart rate(HR,an indicator of cardiovascular autonomic function)and exposure to metals in PM2.5 between 53 patients with COPD and 82 healthy controls by using linear mixed-effects models.In all participants,the HR levels were significantly associated with interquartile range increases in the average concentrations of Cr,Zn,and Pb,but the strength of the associations differed by exposure time(from 1.4%for an average 9 days(d)Cr exposure to 3.5%for an average 9 d Zn exposure).HR was positively associated with the average concentrations of PM2.5 and certain metals only in patients with COPD.Associations between HR and exposure to PM2.5,K,Cr,Mn,Ni,Cu,Zn,As,and Se in patients with COPD significantly differed from those in health controls.Furthermore,association between HR and Cr exposure was robust in COPD patients.In conclusion,our findings indicate that COPD could exacerbate difference in HR following exposure to metals in PM2.5.
文摘A novel method based on plastic processing and equipment for preparing ultra-fine metal fibers and particles is reported.With this new method,metal fibers and particles can both be produced on the same equipment and the surfaces of the fibers and particles can be protected from oxidation by the polymers or solvents during the preparation process.Metal-alloy powders with lower melt point were filled into polymer by an extruder,followed by a die-drawing process at a temperature lower than the melt temperature of the metal alloy.Metal fibers or particles were obtained after the polymer matrix was washed away.Metal alloy fibers can be obtained when a polymer that strongly interacts with metal alloy,such as a special polyvinyl alcohol with a low alcoholysis degree,is used as the polymer matrix.Metal-alloy particles can be obtained when a polymer with weak interaction with metal alloy,such as polyethylene(PE),is used as the polymer matrix.Based on the principle of this new method,it is possible to produce finer or even nano-sized metal fibers and particles with higher melting points.
基金supported by the National Basic Research Program of China (No. 2011CB201500)the National Social Science Fund of China (No. 12&ZD236)the National Natural Science Foundation of China (No. 21277096)
文摘Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste(MSW). In this study, we investigated fine particles of 〈 2 mm, which are small fractions in MSW but constitute a significant component of the total heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of 〈 10 μm within the fine particles. Zn–Cu, Pb–Fe and Fe–Mn–Cr had significant correlations in terms of spatial distribution. The overlapped enrichment, spatial association, and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions(such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction(such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.
文摘Due to the higher reliability and small ground space requirement, compressed GIS (gas insulated substation) has found extensive applications in urban areas and developing countries. The major parts of GIS is the gas insulated busducts, circuit breakers, isolators, etc.. The voltage withstand capability of SF6 (sulphur hexafluoride) busduct is strongly dependent on field perturbations such as those caused by conductor surface imperfections and by conducting particle contaminants which arise due to manufacturing process, mechanical vibrations, moving parts of system etc.. Contamination can create insulation problems at operating fields. An optimized design of GIS by varying the inner and outer diameter to 89 mm and 241 mm is considered for analysis and compared with a single phase enclosure with outer diameter as 152 mm and inner conductor diameter of 55 mm with aluminum and copper particles of size 10 mm in length and 0.25 mm in radius present on the enclosure. The results have been compared on the extent of particle movement for the same condition of the gas and particle geometry. Monte Carlo simulation is also carried out for determining the motion of particles in axial and radial directions. The random solid angle is changed from 1 to 0.5 degrees to take into account more smooth end profile of the particle. The simulation results have been presented and analyzed.
基金supported in part by the National Basic Research Program of China(973 Program)(2014CB239500)the National Natural Science Foundation of China(51737005&51807060),Beijing Municipal Natural Science Foundation(3192036)the Fundamental Research Funds for the Central Universities(2018MS165).
文摘Metal particle contamination in a gas-insulated switchgear(GIS)or a gas-insulated transmission line(GIL)is an important factor leading to the decline of insulation performance.Exploring the deterioration mechanism and suppression measures of metal particles on insulation is a key technical problem in enhancing the dielectric strength of GIS/GIL equipment.In this paper,the charge and motion characteristics of metal particles are first introduced.The gas gap breakdown caused by free metal particles and the surface flashover caused by metal particles near or adsorbed on the insulator are then analyzed according to different particle motion patterns and spatial locations.Subsequently in terms of operation managements,the existing methods of particle detection are analyzed.In addition,the main inhibition methods of metal particles are introduced from three aspects:particle trap,insulator surface treatment and electrode coating.Finally,the prospects in the future research on particle pollution in GIS/GIL are also pointed out.
基金financial support from Ademe(the French Agency of Sustainable Development and Energy)through the"DIMENSION"projectthe National Research Agency under reference ANR-12-0011-VBDUthe National Polytechnic Institute in Toulouse(INPT)
文摘At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles(PM). Different leafy vegetables(lettuces and cabbages) cultivated in RHIZOtest? devices were, therefore, exposed in a greenhouse for 5, 10 and 15 days to various Pb O PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves(up to 7392 mg/kg dry weight(DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth(up to 68.2% in lettuce) and net photosynthesis(up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities(in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption.