The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. S...The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. Significant differences of heavy metal removal efficiencies were observed among four activated sludge processes. The removal efficiency for As(75.5%) in the oxidation ditch(OD) process is significantly higher than that in the conventional activated sludge(CAS) process(38.6%) or sequencing batch reactor(SBR) process(51.4%). The mean removal efficiencies for Cu and Ni in the OD process are 90.5% and 46.7%, respectively, while low mean removal efficiencies are observed for Cu(69.9%) and Ni(16.5%), respectively, in the SBR process. The removal efficiencies for Cu and Ni in the OD process are significantly higher than those in the anaerobic-anoxic-oxic(A2-O) process. These results highlight the differences of removal efficiencies for heavy metals in different processes and should be considered when selecting a wastewater treatment process.展开更多
In this study constructed wetlands (CWs) were used to remove three heavy metals (Zn, Cu and Pb). The two tested substrates were made of coke and gravel, respectively. First order dynamic model was appropriate to descr...In this study constructed wetlands (CWs) were used to remove three heavy metals (Zn, Cu and Pb). The two tested substrates were made of coke and gravel, respectively. First order dynamic model was appropriate to describe removing of Zn and Cu. The experimental results showed that first dynamic removal rate constants of Zn in CWs with coke and gravel were 0.2326 h-1 and 0.1222 h-1, respectively. And those of Cu in CWs with coke and gravel were 0.2017 h-1 and 0.3739 h-1. However, removal efficiencies of Pb in the coke system and the gravel system were within 95-99%, so the first order dynamic model failed to fit the experimental data because the hydraulic resident times of Pb did not affect outlet concentration of Pb. From the removal rate constants, it is found that the coke and gravel system have different absorption efficiencies of heavy metal pollutants. Therefore, it is suggested that the removal efficiencies of heavy metals are influenced by the choice of substrates to some extent.展开更多
In this experiment,cobalt ferrite-supported activated carbon(CF-AC)was developed and characterized via the wet impregnation method for the removal of Cr and Pb(II)ions from tannery wastewater.Batch adsorption was carr...In this experiment,cobalt ferrite-supported activated carbon(CF-AC)was developed and characterized via the wet impregnation method for the removal of Cr and Pb(II)ions from tannery wastewater.Batch adsorption was carried out to evaluate the effect of experimental operating conditions(pH of solution,contact time,adsorbent dose,and temperature),and the removal efficiencies of Cr and Pb(II)ions by the developed adsorbents were calculated and recorded for all experimental conditions.These variables were estimated and reported as removal efficiencies of 98.2%for Cr and 96.4%for Pb(II)ions at the optimal conditions of 5,0.8 g,80 min,and 333 K for pH,adsorbent dose,contact time,and temperature,respectively.The equilibrium for the sorption of Cr and Pb(II)ions was studied using four widely used isotherm models(the Langmuir,Freundlich,Dubinin-Radushkevich,and Temkin isotherm models).It was found that the Freundlich isotherm model fit better with the coefficient of determination(R2)of 0.9484 and a small sum of square error of 0.0006.The maximum adsorption capacities(Qm)of Pb(II)and Cr adsorbed onto CF-AC were determined to be 6.27 and 23.6 mg/g,respectively.The adsorption process conformed well to pseudo-second order kinetics as revealed by the high R2 values obtained for both metals.The thermodynamic parameters showed that adsorption of Cr and Pb(II)ions onto CF-AC was spontaneous,feasible,and endothermic under the studied conditions.The mean adsorption energy(E)values revealed that the adsorption mechanism of Cr and Pb(II)by CF-AC is physical in nature.The results of the study showed that adsorbent developed from CF-AC can be efficiently used as an environmentally friendly alternative adsorbent,for removal of Cr and Pb(II)ions in tannery wastewater.展开更多
Mining activities have led to a generation of large quantities of heavy metals laden wastes which are released into the environment in an unsustainable way causing the contamination of the ecosystems and posing a risk...Mining activities have led to a generation of large quantities of heavy metals laden wastes which are released into the environment in an unsustainable way causing the contamination of the ecosystems and posing a risk to human health. Most mining companies have not employed any rehabilitation or remediation program of the heavy metal laden waste. The aim of this study was to assess the potential of sunflower for phytoremediation of heavy metal polluted mine tailings. Phytoremediation is an emerging technology in the remediation of mine tailings that uses tolerant plant species to clean up contaminated sites. It uses plants with high biomass and sunflower has been identified as such. These plants can extract, transfer, sequester and stabilize a variety of metals through mechanisms such as phytoextraction, phytostabilization, phytoaccumulation and phytovolatilization. Pot experiments were conducted by growing sunflower (Helianthus annuus L.) in pyrite mine tailings and in agricultural soil as a control. The study showed that the concentration of Cu reduced from 40.76 mg/kg to 36.59 mg/kg, Zn reduced from 3.58 mg/kg to 3.49 mg/kg and Fe reduced from 23.70 mg/kg to 10 mg/kg respectively in the mine tailings after 6 weeks. Analysis of harvested sunflower (roots, stems, leaves) showed that sunflower could remove heavy metals from the tailings and the highest removal efficiency was 53.7% and the highest translocation factor was 0.25. It was concluded that sunflower has the potential to remediate contaminated mine tailings and that phytoremediation is a viable and efficient technology to treat soils contaminated with heavy metals.展开更多
基金Project(2012AA06A202)supported by Hi-tech Research and Development Project of China
文摘The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. Significant differences of heavy metal removal efficiencies were observed among four activated sludge processes. The removal efficiency for As(75.5%) in the oxidation ditch(OD) process is significantly higher than that in the conventional activated sludge(CAS) process(38.6%) or sequencing batch reactor(SBR) process(51.4%). The mean removal efficiencies for Cu and Ni in the OD process are 90.5% and 46.7%, respectively, while low mean removal efficiencies are observed for Cu(69.9%) and Ni(16.5%), respectively, in the SBR process. The removal efficiencies for Cu and Ni in the OD process are significantly higher than those in the anaerobic-anoxic-oxic(A2-O) process. These results highlight the differences of removal efficiencies for heavy metals in different processes and should be considered when selecting a wastewater treatment process.
文摘In this study constructed wetlands (CWs) were used to remove three heavy metals (Zn, Cu and Pb). The two tested substrates were made of coke and gravel, respectively. First order dynamic model was appropriate to describe removing of Zn and Cu. The experimental results showed that first dynamic removal rate constants of Zn in CWs with coke and gravel were 0.2326 h-1 and 0.1222 h-1, respectively. And those of Cu in CWs with coke and gravel were 0.2017 h-1 and 0.3739 h-1. However, removal efficiencies of Pb in the coke system and the gravel system were within 95-99%, so the first order dynamic model failed to fit the experimental data because the hydraulic resident times of Pb did not affect outlet concentration of Pb. From the removal rate constants, it is found that the coke and gravel system have different absorption efficiencies of heavy metal pollutants. Therefore, it is suggested that the removal efficiencies of heavy metals are influenced by the choice of substrates to some extent.
文摘In this experiment,cobalt ferrite-supported activated carbon(CF-AC)was developed and characterized via the wet impregnation method for the removal of Cr and Pb(II)ions from tannery wastewater.Batch adsorption was carried out to evaluate the effect of experimental operating conditions(pH of solution,contact time,adsorbent dose,and temperature),and the removal efficiencies of Cr and Pb(II)ions by the developed adsorbents were calculated and recorded for all experimental conditions.These variables were estimated and reported as removal efficiencies of 98.2%for Cr and 96.4%for Pb(II)ions at the optimal conditions of 5,0.8 g,80 min,and 333 K for pH,adsorbent dose,contact time,and temperature,respectively.The equilibrium for the sorption of Cr and Pb(II)ions was studied using four widely used isotherm models(the Langmuir,Freundlich,Dubinin-Radushkevich,and Temkin isotherm models).It was found that the Freundlich isotherm model fit better with the coefficient of determination(R2)of 0.9484 and a small sum of square error of 0.0006.The maximum adsorption capacities(Qm)of Pb(II)and Cr adsorbed onto CF-AC were determined to be 6.27 and 23.6 mg/g,respectively.The adsorption process conformed well to pseudo-second order kinetics as revealed by the high R2 values obtained for both metals.The thermodynamic parameters showed that adsorption of Cr and Pb(II)ions onto CF-AC was spontaneous,feasible,and endothermic under the studied conditions.The mean adsorption energy(E)values revealed that the adsorption mechanism of Cr and Pb(II)by CF-AC is physical in nature.The results of the study showed that adsorbent developed from CF-AC can be efficiently used as an environmentally friendly alternative adsorbent,for removal of Cr and Pb(II)ions in tannery wastewater.
文摘Mining activities have led to a generation of large quantities of heavy metals laden wastes which are released into the environment in an unsustainable way causing the contamination of the ecosystems and posing a risk to human health. Most mining companies have not employed any rehabilitation or remediation program of the heavy metal laden waste. The aim of this study was to assess the potential of sunflower for phytoremediation of heavy metal polluted mine tailings. Phytoremediation is an emerging technology in the remediation of mine tailings that uses tolerant plant species to clean up contaminated sites. It uses plants with high biomass and sunflower has been identified as such. These plants can extract, transfer, sequester and stabilize a variety of metals through mechanisms such as phytoextraction, phytostabilization, phytoaccumulation and phytovolatilization. Pot experiments were conducted by growing sunflower (Helianthus annuus L.) in pyrite mine tailings and in agricultural soil as a control. The study showed that the concentration of Cu reduced from 40.76 mg/kg to 36.59 mg/kg, Zn reduced from 3.58 mg/kg to 3.49 mg/kg and Fe reduced from 23.70 mg/kg to 10 mg/kg respectively in the mine tailings after 6 weeks. Analysis of harvested sunflower (roots, stems, leaves) showed that sunflower could remove heavy metals from the tailings and the highest removal efficiency was 53.7% and the highest translocation factor was 0.25. It was concluded that sunflower has the potential to remediate contaminated mine tailings and that phytoremediation is a viable and efficient technology to treat soils contaminated with heavy metals.