By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length a...By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.展开更多
The transmetallation reaction of 4 Schiff base type arylmercury compounds with metallic tin has been carried out in refluxing xylene.It was found that the reaction proceeds in the same manner as that of chloro[2-(phen...The transmetallation reaction of 4 Schiff base type arylmercury compounds with metallic tin has been carried out in refluxing xylene.It was found that the reaction proceeds in the same manner as that of chloro[2-(phenylazo)phenyl]mercury(Ⅱ) to give dichlorobisaryltin(Ⅳ).The ~1H NMR spectra of the products provide evidence for the presence of N→Sn intramolecular coordination.The formation of dichlorobisaryltin(Ⅳ)as a unique product probably arises from the N→Sn intramolecular coordination which results in the increasing of the stability of the molecule.展开更多
Allylation of terminal epoxides(1)to give the homoallylic alcohols(2)and bishomoallylic alcohols(3)can be carried out successfully by allyl bromide and metallic zinc or tin.The effect of substituents on epoxides was s...Allylation of terminal epoxides(1)to give the homoallylic alcohols(2)and bishomoallylic alcohols(3)can be carried out successfully by allyl bromide and metallic zinc or tin.The effect of substituents on epoxides was studied.展开更多
The thickness effect of the TiN capping layer on the time dependent dielectric breakdown(TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper.Based on experimental results,i...The thickness effect of the TiN capping layer on the time dependent dielectric breakdown(TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper.Based on experimental results,it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer.From the charge pumping measurement and secondary ion mass spectroscopy(SIMS) analysis,it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density.In addition,the influences of interface and bulk trap density ratio Nit/Not are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo(kMC) method.The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses.展开更多
Some information on how to use in-situ determined diffusion coefficient of Cu to make barrier layer of Cu metallization in ultra large scale integrations (ULSIs) was provided. Diffusion coefficients of Cu in Co at l...Some information on how to use in-situ determined diffusion coefficient of Cu to make barrier layer of Cu metallization in ultra large scale integrations (ULSIs) was provided. Diffusion coefficients of Cu in Co at low temperature were determined to analyze Cu migration to Co surface layer. The diffusion depths were analyzed using X-ray photoelectron spectroscopy (XPS) depth profile to investigate the diffusion effect of Cu in Co at different temperatures. The possible pretreatment temperature and time of barrier layer can be predicted according to the diffusion coefficients of Cu in Co.展开更多
In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The lar...In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The largest size of inclusions in the casting and the thermodynamic possibility of TiN precipitation in steel were also calculated. The results show that sulfide inclusions are evenly distributed and the content is low. The amount of oxide inclusions in CIESC: 4Cr5MoSiV1 steel is close to the ESR steel and lower than that in the EAF steel, and there are some differences along radial direction. Nitride inclusions are fine and the diameter of the largest one is 3-1 mum. With the increase of the centrifugal machine's rotational speed, the ratio of round inclusions increases and the ratio of sharp inclusions decreases. According to the experiment and the calculation results, it is pointed out that the largest diameter of non-metallic inclusions in the CIESC 4Cr5MoSiV1 casting is only 6.6 mum, and [N%][Ti%] in 4Cr5MoSiV1 steel should be controlled less than 4.4x 10(-5) in order to further reduce the amount and size of TiN inclusions.展开更多
用金属有机物化学气相淀积(Metal Organic Chemical Vapor Deposition,MOCVD)制备了 TiN 薄膜,通过不同循环制备的、厚度相同的平面薄膜电阻率的比较研究了 TiN 薄膜的电学性质.结果表明,多次循环会引入界面而增大电阻率, 与薄膜成分...用金属有机物化学气相淀积(Metal Organic Chemical Vapor Deposition,MOCVD)制备了 TiN 薄膜,通过不同循环制备的、厚度相同的平面薄膜电阻率的比较研究了 TiN 薄膜的电学性质.结果表明,多次循环会引入界面而增大电阻率, 与薄膜成分和微结构分析的结果一致.得到了单循环的最优厚度以使样品电阻率最低.通过相同循环、不同厚度样品在真实器件中电学性能的比较,发现介窗(Via)直径越小,TiN 薄膜对介窗电阻的影响越大.展开更多
文摘By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.
文摘The transmetallation reaction of 4 Schiff base type arylmercury compounds with metallic tin has been carried out in refluxing xylene.It was found that the reaction proceeds in the same manner as that of chloro[2-(phenylazo)phenyl]mercury(Ⅱ) to give dichlorobisaryltin(Ⅳ).The ~1H NMR spectra of the products provide evidence for the presence of N→Sn intramolecular coordination.The formation of dichlorobisaryltin(Ⅳ)as a unique product probably arises from the N→Sn intramolecular coordination which results in the increasing of the stability of the molecule.
文摘Allylation of terminal epoxides(1)to give the homoallylic alcohols(2)and bishomoallylic alcohols(3)can be carried out successfully by allyl bromide and metallic zinc or tin.The effect of substituents on epoxides was studied.
基金supported by the National High Technology Research and Development Program of China(Grant No.SS2015AA010601)the National Natural Science Foundation of China(Grant Nos.61176091 and 61306129)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Micro Electronics of Chinese Academy of Sciences
文摘The thickness effect of the TiN capping layer on the time dependent dielectric breakdown(TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper.Based on experimental results,it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer.From the charge pumping measurement and secondary ion mass spectroscopy(SIMS) analysis,it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density.In addition,the influences of interface and bulk trap density ratio Nit/Not are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo(kMC) method.The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses.
文摘Some information on how to use in-situ determined diffusion coefficient of Cu to make barrier layer of Cu metallization in ultra large scale integrations (ULSIs) was provided. Diffusion coefficients of Cu in Co at low temperature were determined to analyze Cu migration to Co surface layer. The diffusion depths were analyzed using X-ray photoelectron spectroscopy (XPS) depth profile to investigate the diffusion effect of Cu in Co at different temperatures. The possible pretreatment temperature and time of barrier layer can be predicted according to the diffusion coefficients of Cu in Co.
文摘In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The largest size of inclusions in the casting and the thermodynamic possibility of TiN precipitation in steel were also calculated. The results show that sulfide inclusions are evenly distributed and the content is low. The amount of oxide inclusions in CIESC: 4Cr5MoSiV1 steel is close to the ESR steel and lower than that in the EAF steel, and there are some differences along radial direction. Nitride inclusions are fine and the diameter of the largest one is 3-1 mum. With the increase of the centrifugal machine's rotational speed, the ratio of round inclusions increases and the ratio of sharp inclusions decreases. According to the experiment and the calculation results, it is pointed out that the largest diameter of non-metallic inclusions in the CIESC 4Cr5MoSiV1 casting is only 6.6 mum, and [N%][Ti%] in 4Cr5MoSiV1 steel should be controlled less than 4.4x 10(-5) in order to further reduce the amount and size of TiN inclusions.
文摘用金属有机物化学气相淀积(Metal Organic Chemical Vapor Deposition,MOCVD)制备了 TiN 薄膜,通过不同循环制备的、厚度相同的平面薄膜电阻率的比较研究了 TiN 薄膜的电学性质.结果表明,多次循环会引入界面而增大电阻率, 与薄膜成分和微结构分析的结果一致.得到了单循环的最优厚度以使样品电阻率最低.通过相同循环、不同厚度样品在真实器件中电学性能的比较,发现介窗(Via)直径越小,TiN 薄膜对介窗电阻的影响越大.