In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering...In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.展开更多
In this study, we employed the density functional theory method to simulate Li-, Na- and K-adsorbed boron α1-sheets(al-BSTs). After optimizing possible structures, we investigated their thermodynamic stabilities, b...In this study, we employed the density functional theory method to simulate Li-, Na- and K-adsorbed boron α1-sheets(al-BSTs). After optimizing possible structures, we investigated their thermodynamic stabilities, barriers for metal atom diffusion on the substrate, and work functions. The computed results indicate that the work function of α1-BST decreases significantly after the adsorption of Li, Na and K. Furthermore, under high hole coverage, these alkali-metal-adsorbed α1-BSTs have lower work functions than the two-dimensional materials of greatest concern and the commonly used electrode materials Ca and Mg. Therefore, the Li-, Na- and K-adsorbed α1-BSTs are potential low-work-function nanomaterials.展开更多
随着超大规模集成电路技术的发展,CMOS器件的制备过程需要同时引入金属栅和超浅结等新的先进工艺技术,因此各种新工艺的兼容性研究具有重要意义.本文研究了超浅结工艺中使用的锗预非晶化对镍硅(N iS i)金属栅功函数的影响.对具有不同剂...随着超大规模集成电路技术的发展,CMOS器件的制备过程需要同时引入金属栅和超浅结等新的先进工艺技术,因此各种新工艺的兼容性研究具有重要意义.本文研究了超浅结工艺中使用的锗预非晶化对镍硅(N iS i)金属栅功函数的影响.对具有不同剂量Ge注入的N iS i金属栅MOS电容样品的研究表明,锗预非晶化采用的Ge注入对N iS i金属栅的功函数影响很小(小于0.03eV),而且Ge注入也不会导致氧化层中固定电荷以及氧化层和硅衬底之间界面态的增加.这些结果表明,在自对准的先进CMOS工艺中,N iS i金属栅工艺和锗预非晶化超浅结工艺可以互相兼容.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60936005 and 61076097)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 708083)the Fundamental Research Funds for the Central Universities (Grant No. 20110203110012)
文摘In this paper the influences of the metal-gate and high-k/SiO 2 /Si stacked structure on the metal-oxide-semiconductor field-effect transistor(MOSFET) are investigated.The flat-band voltage is revised by considering the influences of stacked structure and metal-semiconductor work function fluctuation.The two-dimensional Poisson's equation of potential distribution is presented.A threshold voltage analytical model for metal-gate/high-k/SiO 2 /Si stacked MOSFETs is developed by solving these Poisson's equations using the boundary conditions.The model is verified by a two-dimensional device simulator,which provides the basic design guidance for metal-gate/high-k/SiO 2 /Si stacked MOSFETs.
基金Supported by the National Natural Science Foundation of China(Nos.21173072, 21601054).
文摘In this study, we employed the density functional theory method to simulate Li-, Na- and K-adsorbed boron α1-sheets(al-BSTs). After optimizing possible structures, we investigated their thermodynamic stabilities, barriers for metal atom diffusion on the substrate, and work functions. The computed results indicate that the work function of α1-BST decreases significantly after the adsorption of Li, Na and K. Furthermore, under high hole coverage, these alkali-metal-adsorbed α1-BSTs have lower work functions than the two-dimensional materials of greatest concern and the commonly used electrode materials Ca and Mg. Therefore, the Li-, Na- and K-adsorbed α1-BSTs are potential low-work-function nanomaterials.
文摘随着超大规模集成电路技术的发展,CMOS器件的制备过程需要同时引入金属栅和超浅结等新的先进工艺技术,因此各种新工艺的兼容性研究具有重要意义.本文研究了超浅结工艺中使用的锗预非晶化对镍硅(N iS i)金属栅功函数的影响.对具有不同剂量Ge注入的N iS i金属栅MOS电容样品的研究表明,锗预非晶化采用的Ge注入对N iS i金属栅的功函数影响很小(小于0.03eV),而且Ge注入也不会导致氧化层中固定电荷以及氧化层和硅衬底之间界面态的增加.这些结果表明,在自对准的先进CMOS工艺中,N iS i金属栅工艺和锗预非晶化超浅结工艺可以互相兼容.