期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Two-Dimensional Metal-Halide Perovskite-based Optoelectronics: Synthesis, Structure, Properties and Applications 被引量:2
1
作者 Hongda Li Tianyuan Luo +4 位作者 Shoufeng Zhang Zijun Sun Xiong He Wenfeng Zhang Haixin Chang 《Energy & Environmental Materials》 SCIE CSCD 2021年第1期46-64,共19页
In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D... In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D)perovskites over moisture, heat, and light remain a severe challenge before the realization of commercial application of metal-halide perovskites.Interestingly, when the dimensions of metal-halide perovskites are reduced to two dimensions(2D), many of the novel properties will arise, such as enlarged bandgap, high photoluminescence quantum yield, and large exciton binding energy. As a result, 2D metal-halide perovskite-based optoelectronic devices display excellent performance, particularly as ambient stable solar cells with excellent power conversion efficiency(PCE), high-performance light-emitting diodes(LEDs) with sharp emission peak, and high-sensitive photodetectors. In this review, we first introduce the synthesis, structure,and physical properties of 2D perovskites. Then, the 2D perovskite-based solar cells, LEDs, and photodetectors are discussed. Finally, a brief overview of the opportunities and challenges for 2D perovskite optoelectronics is presented. 展开更多
关键词 applications metal-halide perovskites OPTOELECTRONICS TWO-DIMENSIONAL
下载PDF
Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model 被引量:1
2
作者 Zhaochun ZHANG, Deliang CUI, Baibiao HUANG, Xiaoyan QIN and Minhua JIANG (Institute of Crystal Materials, Shandong University, Jinan 250100, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期354-356,共3页
In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpr... In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model. 展开更多
关键词 In Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth metal-halide System by Means of Subregular Solution Model
下载PDF
Luminescent metal-halide perovskites:fundamentals,synthesis,and light-emitting devices
3
作者 Kang Wang Jeong Hui Kim +12 位作者 Jie Yang Xiaoke Liu Yixuan Dou Yuxuan Li Weijian Tao Haiyun Dong Haiming Zhu Kaifeng Wu Li Na Quan Feng Gao Jianpu Wang Letian Dou Yong Sheng Zhao 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第6期1776-1838,共63页
Metal-halide perovskites have garnered considerable research attention as highly efficient light emitters in recent years due to their outstanding optoelectronic properties with remarkable tunability and excellent sol... Metal-halide perovskites have garnered considerable research attention as highly efficient light emitters in recent years due to their outstanding optoelectronic properties with remarkable tunability and excellent solution processabilities.Substantial advancements have been achieved in the development of novel halide perovskites,and the exploitations of these materials in lightemitting devices.This review comprehensively outlines recent breakthroughs in metal-halide perovskites,encompassing the rational design of perovskite materials with tunable light emission properties,the controllable growth of single crystal for a deeper understanding of their structure-property relationships,as well as the fundamental insights into the photophysics and carrier dynamics in perovskite systems.Additionally,it provides an overview of recent applications of perovskite materials in high-performance light-emitting diodes(LEDs)and lasers. 展开更多
关键词 metal-halide perovskites perovskite luminescent materials perovskite synthesis excited-state processes perovskite light-emitting diodes perovskite lasers
原文传递
Unveiling non-radiative center control in CsPbBr_(3) nanocrystals:A comprehensive comparative analysis of hot injection and ligandassisted reprecipitation approaches
4
作者 Daocheng Hong Yuchen Zhang +9 位作者 Shuhan Pan Hanyu Liu Wei Mao Wanli Zhang Yuhui Ye Zhihong Wei Xuxing Lu Xiaoyong Wang Zhenda Lu Yuxi Tian 《Nano Research》 SCIE EI CSCD 2024年第5期4525-4534,共10页
Metal-halide perovskite nanocrystals(NCs)have gained significant attention in the field of optoelectronic and photonic devices due to their promising applications.Despite their exceptional optical properties,the impac... Metal-halide perovskite nanocrystals(NCs)have gained significant attention in the field of optoelectronic and photonic devices due to their promising applications.Despite their exceptional optical properties,the impact of different synthetic strategies on the fundamental nature of NCs,such as nonradiative recombination centers,remains poorly understood.In this study,we investigated the photophysical properties of CsPbBr_(3) NCs synthesized using two distinct methods,hot injection and ligand-assisted reprecipitation,at the individual particle level.We observed different blinking behaviors under specific photoexcitation power densities and proposed,through intensity-lifetime analysis and Monte-Carlo simulations,that these different synthetic strategies can fabricate NCs with similar crystal structures but distinct surface quenchers with varying energy levels,which significantly affected the photo-induced blinking-down and blinking-up behaviors in individual NCs.Our findings indicate a practical and feasible approach for controlling defect engineering in perovskite NCs,with significant implications for their use in optoelectronic and other technological applications. 展开更多
关键词 metal-halide perovskite nanocrystals photophysical properties nonradiative recombination centers hot injection method ligand-assisted reprecipitation
原文传递
Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition 被引量:8
5
作者 Xu Chen Lucheng Peng +3 位作者 Keke Huang Zhan Shi Renguo Xie Wensheng Yang 《Nano Research》 SCIE EI CAS CSCD 2016年第7期1994-2006,共13页
Metal-halide perovskites are novel optoelectronic materials that are considered good candidates for solar harvesting and light emitting applications. In this study, we develop a reproducible and low-cost approach for ... Metal-halide perovskites are novel optoelectronic materials that are considered good candidates for solar harvesting and light emitting applications. In this study, we develop a reproducible and low-cost approach for synthesizing high- quality cesium lead halide perovskite (CsPbX3, X = CI, Br, and I or C1/Br and I/Br) nanocrystals (NCs) by direct heating of precursors in octadecene in air. Experimental results show that the particle size and composition of as-prepared CsPbX3 nanocrystals can be successfully tuned by a simple variation of reaction temperature. The emission peak positions of the as-prepared nanocrystals can be conveniently tuned from the UV to the NIR (360-700 nm) region, and the quantum yield of the as-obtained samples (green and red emissions) can reach up to 87%. The structures and chemical compositions of the as-obtained NCs were characterized by transmission electron microscopy, X-ray diffraction, and elemental analysis. This proposed synthetic route can yield large amounts of high-quality NCs with a one-batch reaction, usually on the gram scale, and could pave the way for further applications of perovskite-based light-emitting and photovoltaic solar cells. 展开更多
关键词 metal-halide perovskites gram-scale synthesis controllable size andcomposition optoelectronic materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部