期刊文献+
共找到1,959篇文章
< 1 2 98 >
每页显示 20 50 100
Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions 被引量:8
1
作者 Hui Zhao Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期89-104,共16页
To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surfa... To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed. 展开更多
关键词 Noble metal-free electrocatalysts Electrocatalysis Surface/interface engineering Metal-air battery Overall water splitting
下载PDF
Ten years of carbon-based metal-free electrocatalysts 被引量:9
2
作者 Rajib Paul Quanbin Dai +1 位作者 Chuangang Hu Liming Dai 《Carbon Energy》 CAS 2019年第1期19-31,共13页
Since the discovery of the first carbon-based metal-free electrocatalysts(C-MFECs,i.e.,N-doped carbon nanotubes)for the oxygen reduction reaction in 2009,the field of C-MFECs has grown enormously over the last 10 year... Since the discovery of the first carbon-based metal-free electrocatalysts(C-MFECs,i.e.,N-doped carbon nanotubes)for the oxygen reduction reaction in 2009,the field of C-MFECs has grown enormously over the last 10 years.C-MFECs,as alternatives to nonprecious transition metals and/or precious noble metal-based electrocatalysts,have been consistently demonstrated as efficient catalysts for oxygen reduction,oxygen evolution,hydrogen evolution,carbon dioxide reduction,nitrogen reduction,and many other(electro-)chemical reactions.Recent research and development of C-MFECs have indicated their potential applications in fuel cells,metal-air batteries,and hydrogen generation through water oxidation as well as electrochemical production of various commodity chemicals,such as ammonia,alcohols,hydrogen peroxide,and other useful hydrocarbons.Further research and development of C-MFECs would surely revolutionize traditional energy conversion and storage technologies with minimal environmental impact.In this short review article,we summarize the journey of C-MFECs over the past 10 years with an emphasis on materials development and their structure-property characterization for applications in fuel cells and metal-air batteries.Current challenges and future prospects of this emerging field are also discussed. 展开更多
关键词 carbon ELECTROCATALYSIS energy conversion energy storage metal-free electrocatalyst
下载PDF
Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media 被引量:6
3
作者 Samarjeet Singh Siwal Wenqiang Yang Qibo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期113-133,共21页
The realization of efficient oxygen evolution reaction(OER) is critical to the development of multiple sustainable energy conversion and storage technologies, especially hydrogen production via water electrolysis. To ... The realization of efficient oxygen evolution reaction(OER) is critical to the development of multiple sustainable energy conversion and storage technologies, especially hydrogen production via water electrolysis. To achieve the massive application of hydrogen energy and mass-scale hydrogen production from water splitting drives the pursuit of competent precious-metal-free electrocatalysts in acidic media, where the hydrogen evolution reaction(HER) is more facilitated. However, the development of high-efficient and acid-stable OER electrocatalysts, which are robust to function stably at high oxidation potentials in the acidic electrolyte, remains a great challenge. This article contributes a focused, perceptive review of the up-to-date approaches toward this emerging research field. The OER reaction mechanism and fundamental requirements for oxygen evolution electrocatalysts in acid are introduced. Then the progress and new discoveries of precious-metal-free active materials and design concepts with regard to the improvement of the intrinsic OER activity are discussed. Finally, the existing scientific challenges and the outlooks for future research directions to the fabrication of emerging, earth-abundant OER electrocatalysts in acid are pointed out. 展开更多
关键词 electrocatalysts Non-noble metals Hydrogen production Water oxidation Acidic media
下载PDF
An account of the strategies to enhance the water splitting efficiency of noble-metal-free electrocatalysts 被引量:5
4
作者 Subhasis Shit Saikat Bolar +1 位作者 Naresh Chandra Murmu Tapas Kuila 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期160-190,I0005,共32页
The electrolysis of water for hydrogen generation has shown immense promise as an energy conversion technology for the green energy economy.Two concurrently occurring electrochemical reactions in water electrolysis(hy... The electrolysis of water for hydrogen generation has shown immense promise as an energy conversion technology for the green energy economy.Two concurrently occurring electrochemical reactions in water electrolysis(hydrogen and oxygen evolution reactions)are sluggish in nature and therefore the employment of electrocatalysts is highly essential.Noble-metal-based electrocatalysts(Pt,Ru O_(2),Ir O_(2),etc.)have shown superior activity towards these reactions.However,their lower natural abundance and inferior stability make the cost to performance ratio of water electrolysis too high.Thus,huge amount of research efforts are being carried out to develop electrocatalysts consisting of earth abundant elements(transition metals,carbon etc.)as the replacement of these noble-metal-based materials.Transition metal compounds,carbonaceous and hybrid materials have shown promise as efficient electrocatalysts but there is still huge gap between the activities of these materials and the noble-metal-based electrocatalysts.Several strategies like morphology modulation,elemental doping,defect engineering etc.are being deployed to enhance the activity of these noble-metal-free electrocatalysts.This review summarizes these strategies and thoroughly discusses the reason behind the changes in activity of the electrocatalysts owing to these modifications.Finally,the remaining research gaps and future prospects in this field are also discussed in detail. 展开更多
关键词 Water splitting electrocatalyst Morphology DOPING Defect engineering Phase engineering
下载PDF
Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting 被引量:12
5
作者 Tingwen Zhao Yuan Wang +3 位作者 Siva Karuturi Kylie Catchpole Qiang Zhang Chuan Zhao 《Carbon Energy》 CAS 2020年第4期582-613,共32页
Electrochemical water splitting has attracted considerable attention for the production of hydrogen fuel by using renewable energy resources.However,the sluggish reaction kinetics make it essential to explore precious... Electrochemical water splitting has attracted considerable attention for the production of hydrogen fuel by using renewable energy resources.However,the sluggish reaction kinetics make it essential to explore precious-metal-free electrocatalysts with superior activity and long-term stability.Tremendous efforts have been made in exploring electrocatalysts to reduce the energy barriers and improve catalytic efficiency.This review summarizes different categories of precious-metal-free electrocatalysts developed in the past 5 years for alkaline water splitting.The design strategies for optimizing the electronic and geometric structures of electrocatalysts with enhanced catalytic performance are discussed,including composition modulation,defect engineering,and structural engineering.Particularly,the advancement of operando/in situ characterization techniques toward the understanding of structural evolution,reaction intermediates,and active sites during the water splitting process are summarized.Finally,current challenges and future perspectives toward achieving efficient catalyst systems for industrial applications are proposed.This review will provide insights and strategies to the design of precious-metalfree electrocatalysts and inspire future research in alkaline water splitting. 展开更多
关键词 alkaline water splitting catalysts design electrocatalysts operando/in situ characterization precious-metal-free catalysts
下载PDF
A mini-review of noble-metal-free electrocatalysts for overall water splitting in non-alkaline electrolytes 被引量:3
6
作者 Jie Yu Yawen Dai +3 位作者 Qijiao He Dongqi Zhao Zongping Shao Meng Ni 《Materials Reports(Energy)》 2021年第2期48-60,共13页
Development of noble-metal-free materials with remarkable electrocatalytic water-splitting performance in acidic or neutral media has sparked considerable attention in recent years.Herein,we review the latest research... Development of noble-metal-free materials with remarkable electrocatalytic water-splitting performance in acidic or neutral media has sparked considerable attention in recent years.Herein,we review the latest research on design and fabrication of precious-metal-free catalytic materials for overall water electrolysis in non-alkaline environment,especially highlighting several optimizing approaches to enhance the catalytic behavior and to realize effective bifunctional electrocatalysts.All these involved noble-metal-free electrocatalysts are classified into transition-metal oxides(TMOs),transition-metal nitrides(TMNs),transition-metal carbides(TMCs),transition-metal phosphides(TMPs),transition-metal chalcogenides,metal complexes,and metal-free carbons,as shown in the main part.Besides,the paper also offers an introduction of the fundamental electrochemistry of water splitting before entering the subject,as well as a prospective discussion on mechanism understanding,novel catalysts fabrication,and standardized performance measurements/evaluation in the last section. 展开更多
关键词 Noble-metal-free electrocatalyst Overall water splitting Oxygen evolution reaction Hydrogen evolution reaction Non-alkaline electrolyte Bifunctional catalytic electrode
下载PDF
Low-Temperature Working Feasibility of Zinc–Air Batteries with Noble Metal-Free Electrocatalysts 被引量:3
7
作者 Chang-Xin Zhao Jia-Ning Liu +8 位作者 Nan Yao Xiaoyuan Zeng Aibing Chen Peng Dong Yingjie Zhang Xinzhi Ma Cheng Tang Bo-Quan Li Qiang Zhang 《Renewables》 2023年第1期73-80,共8页
Expanding the application scenario for rechargeable batteries is the key to the terminal utilization of renewable energy.Enabling zinc–air batteries at low temperatures is drawing increasing attention,yet the low-tem... Expanding the application scenario for rechargeable batteries is the key to the terminal utilization of renewable energy.Enabling zinc–air batteries at low temperatures is drawing increasing attention,yet the low-temperature working feasibility of zinc–air batteries with noble metalfree electrocatalysts remains indistinct.In this contribution,the low-temperature performances of zinc–air batteries with noble metal-free electrocatalysts are comprehensively investigated.Armed with a representative noble metal-free bifunctional oxygen electrocatalyst,the zinc–air batteries demonstrate satisfactory yet relatively depressed performance at low temperatures,compared with that at room temperatures.The reduced electrolyte conductivity is identified as one of the limiting factors for the reduced low-temperature performance.Furthermore,electrolyte engineering via solvation structure regulation is performed on the zinc–air batteries with noblemetal-free electrocatalysts,where an improved low-temperature performance is achieved.This work reveals the compatibility between noble metal-free electrocatalysts and low-temperature feasibility/low-temperature performance enhancement strategies for zinc–air batteries and affords new opportunities to satisfy low-cost and efficient energy storage at harsh working conditions. 展开更多
关键词 zinc–air batteries noble metal-free electrocatalysts low-temperature energy storage devices aqueous electrolyte bifunctional oxygen evolution reaction/oxygen reduction reaction electrocatalysts
原文传递
Noble-Metal-Free Oxygen Evolution Reaction Electrocatalysts Working at High Current Densities over 1000 mA cm^(-2):From Fundamental Understanding to Design Principles
8
作者 Xian Zhang Mengtian Jin +5 位作者 Feifei Jia Jiaqi Huang Abbas Amini Shaoxian Song Hao Yi Chun Cheng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期43-59,共17页
Alkaline water electrolysis provides a promising route for"green hydrogen"generation,where anodic oxygen evolution reaction(OER)plays a crucial role in coupling with cathodic hydrogen evolution reaction.To d... Alkaline water electrolysis provides a promising route for"green hydrogen"generation,where anodic oxygen evolution reaction(OER)plays a crucial role in coupling with cathodic hydrogen evolution reaction.To date,the development of highly active and durable OER catalysts based on earth-abundant elements has drawn wide attention;nevertheless,their performance under high current densities(HCDs≥1000 mA cm^(-2))has been less emphasized.This situation has seriously impeded large-scale electrolysis industrialization.In this review,in order to provide a guideline for designing high-performance OER electrocatalysts,the effects of HCD on catalytic performance involving electron transfer,mass transfer,and physical/chemical stability are summarized.Furthermore,the design principles were pointed out for obtaining efficient and robust OER electrocatalysts in light of recent progress of OER electrocatalysts working above 1000 mA cm^(-2).These include the aspects of developing self-supported catalytic electrodes,enhancing intrinsic activity,enhancing the catalyst-support interaction,engineering surface wettability,and introducing protective layer.Finally,summaries and outlooks in achieving OER at industrially relevant HCDs are proposed. 展开更多
关键词 alkaline water splitting high current density long-term stability noble-metal-free electrocatalysts oxygen evolution reaction
下载PDF
Litchi-derived platinum groupmetal-free electrocatalysts for oxygen reduction reaction and hydrogen evolution reaction in alkalinemedia 被引量:1
9
作者 Seyed Ariana Mirshokraee Mohsin Muhyuddin +6 位作者 Roberto Lorenzi Giorgio Tseberlidis Carmelo Lo Vecchio Vincenzo Baglio Enrico Berretti Alessandro Lavacchi Carlo Santoro 《SusMat》 2023年第2期248-262,共15页
Within the framework of the circular economy,the waste litchi’s skins were upgraded and transformed into electrocatalysts for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER).The waste litchi’s ski... Within the framework of the circular economy,the waste litchi’s skins were upgraded and transformed into electrocatalysts for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER).The waste litchi’s skins were pyrolyzed,activated,and then used as carbon support for fabricating metal–nitrogen–carbons(M–N–Cs)which belong to a promising class of platinum group metal-free electrocatalysts.The activated char was functionalized with transition metal(Fe,Ni,and Co)-phthalocyanine(Pc)in monometallic and bimetallic fashion by subjecting it to a thermal treatment at 600 and 900◦C.The samples functionalized at 900℃ showed higher performance for HER due to the formation of metal nanoparticles,whereas the samples functionalized at 600℃ showed higher performance for ORR.Particularly,sample Ni–Co 900 had an overpotential of−0.38 V for HER,while the sample Fe 600 was the most active electrocatalyst for ORR by demonstrating the onset potential of∼0.9 V(a half-wave potential of∼0.81 V)with the least production of unwanted peroxide anion. 展开更多
关键词 circular economy hydrogen evolution reaction oxygen reduction reaction PGM-free electrocatalyst
原文传递
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:4
10
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER Transition metal phosphide Templated synthesis electrocatalysts
下载PDF
Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries 被引量:1
11
作者 Yunnan Gao Ling Liu +10 位作者 Yi Jiang Dexin Yu Xiaomei Zheng Jiayi Wang Jingwei Liu Dan Luo Yongguang Zhang Zhenjia Shi Xin Wang Ya‑Ping Deng Zhongwei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期13-48,共36页
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-... Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs. 展开更多
关键词 Zinc-air batteries Bifunctional electrocatalysts Design principles Mechanistic understandings
下载PDF
Recent advances and future prospects on Ni_(3)S_(2)-Based electrocatalysts for efficient alkaline water electrolysis 被引量:1
12
作者 Shiwen Wang Zhen Geng +4 位作者 Songhu Bi Yuwei Wang Zijian Gao Liming Jin Cunman Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期659-683,共25页
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic... Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 Alkaline water electrolysis HYDROGEN electrocatalysts Ni_(3)S_(2)
下载PDF
Fullerenes and derivatives as electrocatalysts: Promises and challenges
13
作者 Kun Guo Ning Li +1 位作者 Lipiao Bao Xing Lu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期7-27,共21页
Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design princi... Carbon-based metal-free nanomaterials are promising alternatives to precious metals as electrocatalysts of key energy storage and conversion technologies.Of paramount significance are the establishment of design principles by understanding the catalytic mechanisms and identifying the active sites.Distinct from sp2-conjugated graphene and carbon nanotube,fullerene possesses unique characteristics that are growingly being discovered and exploited by the electrocatalysis community.For instance,the well-defined atomic and molecular structures,the good electron affinity to tune the electronic structures of other substances,the intermolecular self-assembly into superlattices,and the on-demand chemical modification have endowed fullerene with incomparable advantages as electrocatalysts that are otherwise not applicable to other carbon ma-terials.As increasing studies are being reported on this intriguing topic,it is necessary to provide a state-of-the-art overview of the recent progress.This review takes such an initiative by summarizing the promises and challenges in the electrocatalytic applications of fullerene and its derivatives.The content is structured according to the composition and structure of fullerene,including intact fullerene(e.g.,fullerene composite and superlattices)and fullerene derivatives(e.g.,doped,endohedral,and disintegrated fullerene).The synthesis,characterization,catalytic mechanisms,and deficiencies of these fullerene-based materials are explicitly elaborated.We conclude it by sharing our perspectives on the key aspects that future efforts shall consider. 展开更多
关键词 FULLERENE Fullerene derivative metal-free catalyst Structural defect electrocatalyst
下载PDF
Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries
14
作者 Jiabing Miao Yingxiao Du +5 位作者 Ruotong Li Zekun Zhang Ningning Zhao Lei Dai Ling Wang Zhangxing He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期33-47,共15页
Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zin... Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs. 展开更多
关键词 zinc ion batteries ANODE zinc metal-free anode recent advances PERSPECTIVES
下载PDF
Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules
15
作者 Wei Guo Linhui Yu +2 位作者 Ling Tang Yan Wan Yangming Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期74-97,共24页
Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Ov... Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Over the past decade,well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms.However,active sites,key intermediate species,precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods.In this Review,we sum-marize the extensive efforts on model catalysts since the 2000s,particularly in the past decade,to overcome the influences of material and structure limitations in metal-free carbon catalysis.Using both nanomolecule model and bulk model,the real contribution of each alien species,defect and edge configuration to a series of fundamentally important reactions,such as thermocatalytic reactions,electrocatalytic reactions,were systematically studied.Combined with in situ techniques,isotope labeling and size control,the detailed reaction mechanisms,the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level.Furthermore,the outlook of model carbon catalysis has also been proposed in this work. 展开更多
关键词 metal-free carbon catalysts Model catalyst ELECTROCATALYSIS Active site Reaction mechanisms
下载PDF
Recent advances of carbon fiber-based self-supported electrocatalysts in oxygen electrocatalysis
16
作者 Jinyu Han Nanping Deng +7 位作者 Hao Chi Gang Wang Yilong Wang Qiang Zeng Zhaozhao Peng Bowen Cheng Baoming Zhou Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期334-363,共30页
Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed i... Oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are the key reactions in numerous renewable energy devices. Unlike conventional powdered catalysts, self-supported catalysts are extensively employed in oxygen electrocatalysis because of the enhanced electron-transfer rate, high specific surface area, and superior mechanical flexibility. Among the self-supported conductive substrates, carbon fiber usually exhibits several distinctive advantages, such as a straightforward preparation process, relatively low cost, good stability, and excellent conductivity. Against this background,carbon fiber-based self-supported electrocatalysts have been widely applied and studied in oxygen electrocatalysis, indicating a promising development direction in oxygen electrocatalyst research.Thus, it is essential to offer an overall summary of the research progress in this field to facilitate its subsequent development. Taking the regulatory mechanisms and modification methods as a starting point, this review comprehensively summarizes recent research on carbon fiber-based self-supported electrocatalysts in recent years. Firstly, a brief overview of the synthesis methods and regulatory mechanisms of carbon fiber-based self-supported electrocatalysts is given. Furthermore, the view also highlights the modification methods and research progress of self-supported electrocatalysts synthesized on carbon fiber-based substrates in recent years in terms of different dopant atoms. Finally, the prospects for the application of self-supported electrocatalysts based on carbon fiber in oxygen electrocatalysis and the possible future directions of their development are presented. This review summarizes recent developments and applications of self-supported bi-functional electrocatalysts with carbon fiber-based materials as the conducting substrate in oxygen electrocatalysis. It also lays a robust scientific foundation for the subsequent reasonable design of highly effective carbon fiber-based self-supported electrocatalysts. 展开更多
关键词 Carbon fiber Self-supported electrocatalysts ORR OER
下载PDF
MXenes and heterostructures-based electrocatalysts for hydrogen evolution reaction:Recent developments and future outlook
17
作者 Abdul Hanan Hafiz Taimoor Ahmed Awan +5 位作者 Faiza Bibi Raja Rafidah Raja Sulaiman Wai Yin Wong Rashmi Walvekar Seema Singh Mohammad Khalid 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期176-206,共31页
The increasing focus on electrocatalysis for sustainable hydrogen(H_(2))production has prompted significant interest in MXenes,a class of two-dimensional(2D)materials comprising metal carbides,carbonitrides,and nitrid... The increasing focus on electrocatalysis for sustainable hydrogen(H_(2))production has prompted significant interest in MXenes,a class of two-dimensional(2D)materials comprising metal carbides,carbonitrides,and nitrides.These materials exhibit intriguing chemical and physical properties,including excellent electrical conductivity and a large surface area,making them attractive candidates for the hydrogen evolution reaction(HER).This scientific review explores recent advancements in MXene-based electrocatalysts for HER kinetics.It discusses various compositions,functionalities,and explicit design principles while providing a comprehensive overview of synthesis methods,exceptional properties,and electro-catalytic approaches for H_(2) production via electrochemical reactions.Furthermore,challenges and future prospects in designing MXenes-based electrocatalysts with enhanced kinetics are highlighted,emphasizing the potential of incorporating different metals to expand the scope of electrochemical reactions.This review suggests possible efforts for developing advanced MXenes-based electrocatalysts,particularly for efficient H_(2) generation through electrochemical water-splitting reactions.. 展开更多
关键词 MXenes electrocatalyst Water Splitting Hydrogen Generation Clean Energy
下载PDF
Ribosome-inspired electrocatalysts inducing preferential nucleation and growth of three-dimensional lithium sulfide for high-performance lithium-sulfur batteries
18
作者 Zhen Wu Wenfeng He +7 位作者 Jiahui Yang Yunuo Gu Ruiqi Yang Yiran Sun Jiajia Yuan Xin Wang Junwu Zhu Yongsheng Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期517-526,共10页
Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trol... Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trolytes,delaying Li_(2)S supersaturation and its nucleation.In this study,we draw inspiration from the ribosome-driven protein synthesis process in cells to prepare ultrasmall nitrogen-doped MoS_(2) nanocrys-tals anchored on porous nitrogen-doped carbon networks(N-MoS_(2)-NC)electrocatalysts.Excitedly,the ex-situ SEM demonstrates that ribosome-inspired N-MoS_(2)-NC electrocatalysts induce early nucleation and rapid growth of three-dimensional Li_(2)s during discharge.Theoretical calculations reveal that the Li-s bond length in N-MoS_(2)-Li_(2)S(100)is shorter,and the corresponding interfacial formation energy is lower than in MoS_(2)-Li_(2)S(100).This accelerated conversion of lithium polysulfides to Li_(2)S can enhance the utilization of active substances and inhibit the shuttle effect.This study highlights the potential of ribosome-inspired N-MoS_(2)-NC in improving the electrochemical stability of Li-S batteries,providing valuable insights for future electrocatalyst design. 展开更多
关键词 Lithium-sulfur batteries electrocatalysts Nanocrystals Ribosome-inspired Nucleation and growth
下载PDF
Progress in metal oxide-based electrocatalysts for sustainable water splitting
19
作者 Aasiya S.Jamadar Rohit Sutar +2 位作者 Susmita Patil Reshma Khandekar Jyotiprakash B.Yadav 《Materials Reports(Energy)》 EI 2024年第3期19-34,共16页
Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in va... Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions,discussing their crystal structure,composition,and surface modification influence on performance.Strategies like surface engineering,doping,and nanostructuring are evaluated for enhancing catalytic activity and stability.The key considerations for commercialization are highlighted,emphasizing ongoing research,innovation,and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future. 展开更多
关键词 Metal oxide HER OER electrocatalyst Overall water spilling
下载PDF
Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density:A review
20
作者 Zhipeng Li Xiaobin Liu +5 位作者 Qingping Yu Xinyue Qu Jun Wan Zhenyu Xiao Jingqi Chi Lei Wang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期33-60,共28页
The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past... The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER. 展开更多
关键词 electrocatalyst High current density Hydrogen evolution reaction Water electrolysis
下载PDF
上一页 1 2 98 下一页 到第
使用帮助 返回顶部