Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob...Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
CO_(2)methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can b...CO_(2)methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2)methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2)methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2)methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2)methanation are summarized.The challenges and the future devel-opments are also discussed.展开更多
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ...The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.展开更多
The modulation of metal-support interfacial interaction is significant but challenging in the design of high-efficiency and high-stability supported catalysts.Here,we report a synthetic strategy to upgrade Cu-CeO_(2)i...The modulation of metal-support interfacial interaction is significant but challenging in the design of high-efficiency and high-stability supported catalysts.Here,we report a synthetic strategy to upgrade Cu-CeO_(2)interfacial interaction by the pyrolysis of mixed metal-organic framework(MOF)structure.The obtained highly dispersed Cu/CeO_(2)-MOF catalyst via this strategy was used to catalyze water-gas shift reaction(WGSR),which exhibited high activity of 40.5μmolCOgcat^(-1).s^(-1)at 300℃and high stability of about 120 h.Based on comprehensive studies of electronic structure,pyrolysis strategy has significant effect on enhancing metal-support interaction and then stabilizing interfacial Cu^(+)species under reaction conditions.Abundant Cu^(+)species and generated oxygen vacancies over Cu/CeO_(2)-MOF catalyst played a key role in CO molecule activation and H2O molecule dissociation,respectively.Both collaborated closely and then promoted WGSR catalytic performance in comparison with traditio nal supported catalysts.This study shall offer a robust approach to harvest highly dispersed catalysts with finely-tuned metal-support interactions for stabilizing the most interfacial active metal species in diverse heterogeneous catalytic reactions.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the ca...The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the catalyst deactivation via sintering,metal leaching,and coking can predominantly occur in the aqueous phase reaction.In this work,the effect of reaction temperature,pressure and second promoter(Cu,Fe,Rh,Mn,Re,Ru,Ir,Sn,B,and P)on catalytic performance and deactivation behaviour of Pt/WOx/-Al2O3 was investigated.When doped with Rh,Mn,Re,Ru,Ir,B,and P,the second promoter boosts catalytic activity by promoting great dispersion of Pt on support and increasing Pt surface area.The increased Bronsted acid sites lead to selective synthesis of 1,3-PDO than 1,2-propanediol(1,2-PDO).The characterization studies of fresh and spent catalysts reveal that the main cause of catalyst deactivation is the Pt sintering,as interpreted based on XRD,CO chemisorption,and TEM analyses.The Pt sintering is affected depending on the second promoter that can either or reduce the interaction between Pt,WO_(χ)/γ and Al_(2)O_(3).As an electron acceptor of Pt in Pt/WO_(χ)/γ-Al_(2)O_(3),Re and Mn as second promoters resulted in increased Pt^(2+) on the catalytic surface,which strengthens the contact between Pt andγ-Al_(2)O_(3) and WO_(χ),resulting in a decrease in Pt sintering.The metal leaching and coking are not affected by the presence of second promoter.The catalyst modified with a second promoter possesses improved catalytic activity and 1,3-PDO production,however the stability continues to remain a challenge.The present work unrav-elled the determining parameters of catalytic activity and deactivation,thus providing a promising pro-tocol toward effective catalysts for glycerol hydrogenolysis.展开更多
The surface properties of oxidic supports and their interaction with the supported metals play critical roles in governing the catalytic activities of oxide‐supported metal catalysts.When metals are supported on redu...The surface properties of oxidic supports and their interaction with the supported metals play critical roles in governing the catalytic activities of oxide‐supported metal catalysts.When metals are supported on reducible oxides,dynamic surface reconstruction phenomena,including strong metal–support interaction(SMSI)and oxygen vacancy formation,complicate the determination of the structural–functional relationship at the active sites.Here,we performed a systematic investigation of the dynamic behavior of Au nanocatalysts supported on flame‐synthesized TiO_(2),which takes predominantly a rutile phase,using CO oxidation above room temperature as a probe reaction.Our analysis conclusively elucidated a negative correlation between the catalytic activity of Au/TiO_(2) and the oxygen vacancy at the Au/TiO_(2) interface.Although the reversible formation and retracting of SMSI overlayers have been ubiquitously observed on Au/TiO_(2) samples,the catalytic consequence of SMSI remains inconclusive.Density functional theory suggests that the electron transfer from TiO_(2) to Au is correlated to the presence of the interfacial oxygen vacancies,retarding the catalytic activation of CO oxidation.展开更多
Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proporti...Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.展开更多
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo...Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.展开更多
Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without lo...Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability,and their research advances in this area over the past three decades are briefly reviewed herein.Regarding the Pt-based catalysts and the low Pt usage,they have firstly tried to clarify the degradation mechanism of Pt/C catalysts,and then demonstrated that the activity and stability could be improved by three strategies:regulating the nanostructures of the active sites,enhancing the effects of support materials,and optimizing structures of the three-phase boundary.For Pt-free catalysts,especialiy carbon-based ones,several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented.Then,an indepth understanding of the degradation mechanism for carbon-based catalysts is discussed,and followed by the corresponding stability enhancement strategies.Also,the carbon-based electrode at the micrometer-scale,faces the challenges such as low active-site density,thick catalytic layer,and the effect of hydrogen peroxide,which require rational structure design for the integral cathodic electrode.This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts.展开更多
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe...To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.展开更多
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec...Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.展开更多
Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of ma...Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of material and it is challenging to characterize the local structure,a reliable structure–property relationship is difficult to establish.Conjugated macrocyclic complexes adsorbed on carbon support are well‐defined models to mimic the singleatom catalysts.Metal–N_(4)site with four electroneutral pyridine‐type ligands embedded in a graphene layer is the most commonly proposed structure of the active site of single‐atom catalysts,but its molecular counterpart has not been reported.In this work,we synthesized the conjugated macrocyclic complexes with a metal center(Co,Fe,or Ni)coordinated with four electroneutral pyridinic ligands as model catalysts for CO_(2)electroreduction.For comparison,the complexes with anionic quadri‐pyridine macrocyclic ligand were also prepared.The Co complex with the electroneutral ligand expressed a turnover frequency of CO formation more than an order of magnitude higher than that of the Co complex with the anionic ligand.Constrained ab initio molecular dynamics simulations based on the well‐defined structures of the model catalysts indicate that the Co complex with the electroneutral ligand possesses a stronger ability to mediate electron transfer from carbon to CO_(2).展开更多
The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology o...The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.展开更多
Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challeng...Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challenge compared to traditional methods.In this study,we present a facile method for the recovery of molybdenum and aluminum contents from spent Mo-Ni/Al_(2)O_(3) hydrogenation catalysts through crystallization separation and coprecipitation.Furthermore,the recovered molybdenum and aluminum are utilized as active metals and carriers for the preparation of new catalysts.Their properties were thoroughly analyzed and investigated using various characterization techniques.The hydrogenation activity of these newly prepared catalysts was evaluated on a fixed-bed small-scale device and compared with a reference catalyst synthesized from commercial raw reagents.Finally,the hydrogenation activity of the catalysts was further assessed by using the entire distillate oil of coal liquefaction as the raw oil,specifically focusing on denitrogenation and aromatic saturation.This work not only offers an effective solution for recycling catalysts but also promotes sustainable development.展开更多
Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalyst...Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.展开更多
Heterogeneous TiCl4/MgCl_(2) type Ziegler-Natta(Z-N)catalysts with unique advantages like low cost,high activity,high stereoregularity and pretty particle morphology,contribute to more than 130 Mt polyolefin large-sca...Heterogeneous TiCl4/MgCl_(2) type Ziegler-Natta(Z-N)catalysts with unique advantages like low cost,high activity,high stereoregularity and pretty particle morphology,contribute to more than 130 Mt polyolefin large-scale production.However,most researches related with heterogeneous Z-N catalysts focused onα-olefin polymerizations like ethylene,propylene,etc.展开更多
Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reduc...Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.展开更多
基金the National Natural Science Foundation of China(21576291,22003076)National Natural Science Foundation of China-Outstanding Youth foundation(22322814)the Fundamental Research Funds for the Central Universities(23CX03007A,22CX06012A)are gratefully acknowledge。
文摘Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
文摘CO_(2)methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2)methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2)methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2)methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2)methanation are summarized.The challenges and the future devel-opments are also discussed.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(NRF,2021R1C1C1013953,2022K1A4A7A04094394,2022K1A4A7A04095890)。
文摘The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.
基金sponsored by the National Key R&D Program of China(2021YFA1501100)the National Natural Science Foundation of China(21832001 and 22293042)the Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202104)。
文摘The modulation of metal-support interfacial interaction is significant but challenging in the design of high-efficiency and high-stability supported catalysts.Here,we report a synthetic strategy to upgrade Cu-CeO_(2)interfacial interaction by the pyrolysis of mixed metal-organic framework(MOF)structure.The obtained highly dispersed Cu/CeO_(2)-MOF catalyst via this strategy was used to catalyze water-gas shift reaction(WGSR),which exhibited high activity of 40.5μmolCOgcat^(-1).s^(-1)at 300℃and high stability of about 120 h.Based on comprehensive studies of electronic structure,pyrolysis strategy has significant effect on enhancing metal-support interaction and then stabilizing interfacial Cu^(+)species under reaction conditions.Abundant Cu^(+)species and generated oxygen vacancies over Cu/CeO_(2)-MOF catalyst played a key role in CO molecule activation and H2O molecule dissociation,respectively.Both collaborated closely and then promoted WGSR catalytic performance in comparison with traditio nal supported catalysts.This study shall offer a robust approach to harvest highly dispersed catalysts with finely-tuned metal-support interactions for stabilizing the most interfacial active metal species in diverse heterogeneous catalytic reactions.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金funded by the National Research Council of Thailand (NRCT)the Second Century Foundation (C2F),Chulalongkorn University,ThailandResearcher Supporting Project RSP2024RR400,King Saud University,Saudi Arabia
文摘The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the catalyst deactivation via sintering,metal leaching,and coking can predominantly occur in the aqueous phase reaction.In this work,the effect of reaction temperature,pressure and second promoter(Cu,Fe,Rh,Mn,Re,Ru,Ir,Sn,B,and P)on catalytic performance and deactivation behaviour of Pt/WOx/-Al2O3 was investigated.When doped with Rh,Mn,Re,Ru,Ir,B,and P,the second promoter boosts catalytic activity by promoting great dispersion of Pt on support and increasing Pt surface area.The increased Bronsted acid sites lead to selective synthesis of 1,3-PDO than 1,2-propanediol(1,2-PDO).The characterization studies of fresh and spent catalysts reveal that the main cause of catalyst deactivation is the Pt sintering,as interpreted based on XRD,CO chemisorption,and TEM analyses.The Pt sintering is affected depending on the second promoter that can either or reduce the interaction between Pt,WO_(χ)/γ and Al_(2)O_(3).As an electron acceptor of Pt in Pt/WO_(χ)/γ-Al_(2)O_(3),Re and Mn as second promoters resulted in increased Pt^(2+) on the catalytic surface,which strengthens the contact between Pt andγ-Al_(2)O_(3) and WO_(χ),resulting in a decrease in Pt sintering.The metal leaching and coking are not affected by the presence of second promoter.The catalyst modified with a second promoter possesses improved catalytic activity and 1,3-PDO production,however the stability continues to remain a challenge.The present work unrav-elled the determining parameters of catalytic activity and deactivation,thus providing a promising pro-tocol toward effective catalysts for glycerol hydrogenolysis.
基金Science and Technology Innovation Program of Hunan Province,Grant/Award Numbers:2020GK2070,2021RC4006Innovation‐Driven Project of Central South University,Grant/Award Number:2020CX008+3 种基金China Scholarship Council(CSC)National Key R&D Program of China,Grant/Award Number:2022YFE0105900National Natural Science Foundation of China,Grant/Award Number:52276093National Research Foundation Singapore,Grant/Award Number:CREATE。
文摘The surface properties of oxidic supports and their interaction with the supported metals play critical roles in governing the catalytic activities of oxide‐supported metal catalysts.When metals are supported on reducible oxides,dynamic surface reconstruction phenomena,including strong metal–support interaction(SMSI)and oxygen vacancy formation,complicate the determination of the structural–functional relationship at the active sites.Here,we performed a systematic investigation of the dynamic behavior of Au nanocatalysts supported on flame‐synthesized TiO_(2),which takes predominantly a rutile phase,using CO oxidation above room temperature as a probe reaction.Our analysis conclusively elucidated a negative correlation between the catalytic activity of Au/TiO_(2) and the oxygen vacancy at the Au/TiO_(2) interface.Although the reversible formation and retracting of SMSI overlayers have been ubiquitously observed on Au/TiO_(2) samples,the catalytic consequence of SMSI remains inconclusive.Density functional theory suggests that the electron transfer from TiO_(2) to Au is correlated to the presence of the interfacial oxygen vacancies,retarding the catalytic activation of CO oxidation.
基金The authors acknowledge the financial supports from the National Science Foundation of China(U1908204,91845201,and 22002093)the funds that Central Government Guides Local Science and Technology Development(2022JH6/100100052)Scientific Research Project of Education Department of Liaoning Province(LQN202006).
文摘Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B1515120072)the Natural Science Foundation of China(22279096 and T2241003)the Fundamental Research Funds for the Central Universities(WUT:2023IVA094).
文摘Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.
基金supported by the National Key Research and Development Program of China(No.2020YFB1506002,2019YFB1504503,2016YFB0101202)National 973 Program of China(No.2012CB215501)National Natural Science Foundation of China(No.52021004,22022502(2021),21822803(2019),21576031(2016),51272297(2013),20936008(2010),20676156(2007),20376088(2004),20176066(2002),29976047(2000).
文摘Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability,and their research advances in this area over the past three decades are briefly reviewed herein.Regarding the Pt-based catalysts and the low Pt usage,they have firstly tried to clarify the degradation mechanism of Pt/C catalysts,and then demonstrated that the activity and stability could be improved by three strategies:regulating the nanostructures of the active sites,enhancing the effects of support materials,and optimizing structures of the three-phase boundary.For Pt-free catalysts,especialiy carbon-based ones,several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented.Then,an indepth understanding of the degradation mechanism for carbon-based catalysts is discussed,and followed by the corresponding stability enhancement strategies.Also,the carbon-based electrode at the micrometer-scale,faces the challenges such as low active-site density,thick catalytic layer,and the effect of hydrogen peroxide,which require rational structure design for the integral cathodic electrode.This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts.
基金funding of the National Key Research and Development Plan(Grant 2017YFB0306600)the Project of SINOPEC(NO.117006).
文摘To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.
基金supported by the National Natural Science Foundation of China(52272194)Liaoning Revitalization Talents Program(XLYC2007155)。
文摘Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.
基金Guangdong Grants,Grant/Award Number:2021ZT09C064National Natural Science Foundation of China,Grant/Award Numbers:22272073,22373045,22373045+2 种基金Shenzhen Science and Technology Program,Grant/Award Numbers:JCYJ20210324104414039,JCYJ20220818100410023,KCXST20221021111207017Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021A1515110360,2022A1515011976China Postdoctoral Science Foundation,Grant/Award Number:2022M721469。
文摘Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of material and it is challenging to characterize the local structure,a reliable structure–property relationship is difficult to establish.Conjugated macrocyclic complexes adsorbed on carbon support are well‐defined models to mimic the singleatom catalysts.Metal–N_(4)site with four electroneutral pyridine‐type ligands embedded in a graphene layer is the most commonly proposed structure of the active site of single‐atom catalysts,but its molecular counterpart has not been reported.In this work,we synthesized the conjugated macrocyclic complexes with a metal center(Co,Fe,or Ni)coordinated with four electroneutral pyridinic ligands as model catalysts for CO_(2)electroreduction.For comparison,the complexes with anionic quadri‐pyridine macrocyclic ligand were also prepared.The Co complex with the electroneutral ligand expressed a turnover frequency of CO formation more than an order of magnitude higher than that of the Co complex with the anionic ligand.Constrained ab initio molecular dynamics simulations based on the well‐defined structures of the model catalysts indicate that the Co complex with the electroneutral ligand possesses a stronger ability to mediate electron transfer from carbon to CO_(2).
基金supported by Fundamental Research Program of Shanxi Province,China(202203021212245)the Science and Technology Achievement Transformation Guidance Special Program of Shanxi Province,China(202104021301052)the Patent Transformation Program of Shanxi Province,China(202306013).
文摘The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.
基金supported by grants from the National Key Research and Development Program of China(2023YE41507601)the National Natural Science Foundation of China(22122807,22378038)+1 种基金the Fundamental Research Funds for the Central Universities(DUT23RC(3)044)State Key Laboratory of Heavy Oil Processing,China University of Petroleum(WX20230149)。
文摘Industrial catalyst waste has emerged as a hazardous pollutant that requires safe and proper disposal after the unloading process.Finding a valuable and sustainable strategy for its treatment is a significant challenge compared to traditional methods.In this study,we present a facile method for the recovery of molybdenum and aluminum contents from spent Mo-Ni/Al_(2)O_(3) hydrogenation catalysts through crystallization separation and coprecipitation.Furthermore,the recovered molybdenum and aluminum are utilized as active metals and carriers for the preparation of new catalysts.Their properties were thoroughly analyzed and investigated using various characterization techniques.The hydrogenation activity of these newly prepared catalysts was evaluated on a fixed-bed small-scale device and compared with a reference catalyst synthesized from commercial raw reagents.Finally,the hydrogenation activity of the catalysts was further assessed by using the entire distillate oil of coal liquefaction as the raw oil,specifically focusing on denitrogenation and aromatic saturation.This work not only offers an effective solution for recycling catalysts but also promotes sustainable development.
基金supported by the National Natural Science Foundation of China(22008212,22078292,21902124)Natural Science Basic Research Planning Shaanxi Province of China(2017ZDJC-29)+2 种基金Key Research and Development Project of Shaanxi Province(2018ZDXM-GY-173)China Postdoctoral Science Foundation(2019 M663848)Open cooperative innovation fund of Xi'an Institute of modern chemistry(SYJJ48).
文摘Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.
基金Supported by National Key Research and Development Program of China(2022 YFB 3704700(2022 YFB 3704702))Major Scientific and Technological Innovation Project of Shandong Province(2021 CXGC 010901)Taishan Scholar Program。
文摘Heterogeneous TiCl4/MgCl_(2) type Ziegler-Natta(Z-N)catalysts with unique advantages like low cost,high activity,high stereoregularity and pretty particle morphology,contribute to more than 130 Mt polyolefin large-scale production.However,most researches related with heterogeneous Z-N catalysts focused onα-olefin polymerizations like ethylene,propylene,etc.
基金supported by Natural Science Foundation of Henan Province of China(162300410253)the Open Research Fund of State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,China Pingmei Shen-ma Group(41040220181107-8).
文摘Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.