Long-term thermal stability of a series of Zr-based metallic glasses with different oxygen contents below their glass transition temperatures was compared based on their deductive continuous-heating-transformation dia...Long-term thermal stability of a series of Zr-based metallic glasses with different oxygen contents below their glass transition temperatures was compared based on their deductive continuous-heating-transformation diagrams created by using the corollary of Kissinger analysis method. It is found that the influence of oxygen on the long-term thermal stability of Zr-based metallic glasses exhibits at lower temperature is different from that on their short-term thermal stability presented at higher temperature. For each kind of the Zr-based metallic glasses, there is a critical heating rate, φ , which corresponds to a critical c temperature, Tc. As heating rate is smaller than φ c and onset devitrification temperature is below Tc, the glass with higher oxygen content will have longer incubation period for onset devitrification. The values of φ c and Tc are related with the glasses’ reduced glass transition temperature Trg. The improving effect of oxygen impurity on the long-term thermal stability of Zr-based metallic glasses was discovered.展开更多
The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impuriti...The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy( E ESE ) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels.展开更多
The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in ...The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in the initial stage of the distillationpurification,increases slowly in the middle stage,and increases rapidly in the last stage,reaching2260mg/kg,and the modifiedseparation coefficient of Ti is1/19.02.The diffusion of the impurity Ti in liquid metal can reach a quasi-equilibrium state in theinitial stage of distillation purification and the calculated results agree well with experimental results;the distribution profile ofimpurity Cu is opposite to Ti,being380mg/kg in the initial stage,decreasing linearly to290mg/kg in the last stage,and themodified separation coefficient is17.99,and the theoretical calculated results are inconsistent with the experimental result.展开更多
The effect of grinding on the spodumene flotation was investigated. The flotation response of spodumene ground by different mills was different, due to the variation of metal ions on spodumene surfaces caused by grind...The effect of grinding on the spodumene flotation was investigated. The flotation response of spodumene ground by different mills was different, due to the variation of metal ions on spodumene surfaces caused by grinding environments and/or impurities. The samples were subjected to acid pickling treatment to remove most of the metal ions from the surfaces, and then all samples showed the same poor flotation response, which confirmed the significance of surface metal ions. Metal ion impurities may come from both grinding environments and lattice substitutions in spodumene. Density functional theory (DFT) calculation revealed that Fe and Ca could exist as lattice substitutions on the spodumene surface while Mg substitution is unlikely to occur. Furthermore, Fe is considered to be active site for the absorption of sodium oleate on the spodumene surface. Morphology analysis showed differences in particle size and shape for samples ground by different mills, resulting in different amounts of exposed surfaces. The particle size, cleavage characteristics caused by grinding environments, and metal ion impurities originated from grinding and isomorphous substitutions, play significant roles in the chemisorption of collector on the spodumene surface.展开更多
The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimen...The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.展开更多
The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size le...The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size less than 0.1 mm was most effective for acid leaching; the extraction yield of impurities was increased by 9% with HF leaching compared with HCl leaching and HNO3 leaching, and increased by 7% with ultrasonic stirring compared with mechanical stirring. The principle of hydrometallurgical purification of metallurgical grade silicon under ultrasonic fields was also discussed.展开更多
In this work,the octaethyl-porphyrins with different central metals(M-OEP,M=Ni,VO,Cu,Co)were used to investigate the ground-state molecular structure,electron distribution and UV-spectra properties on molecular level ...In this work,the octaethyl-porphyrins with different central metals(M-OEP,M=Ni,VO,Cu,Co)were used to investigate the ground-state molecular structure,electron distribution and UV-spectra properties on molecular level by density functional theory(DFT).The results showed that the calculation structure parameters of metalloporphyrins agreed well with the experimental value.According to the Natural Bond Orbital(NBO)analysis,the charge distribution of different metalloporphyrins was found that the charge values of the central metal M decreased with the order of VO<Ni<Co<Cu,while the bonding strength between M and the coordinating atom N was VO>Ni>Co>Cu.At the same time,the frontier molecular orbital calculations showed that the SOMO energy of VO(OEP)molecules in the open-shell system was higher than that of Co(OEP)and Cu(OEP),which means that its UV absorption characteristic peak would be red-shifted.In addition,the IEFPCM model of Time-dependent Density functional theory(TD-DFT)was further utilized to simulate the four substance in toluene solution:Co(OEP),Ni(OEP),Cu(OEP)and VO(OEP),and the Soret band peaks were calculated respectively as:382 nm,383 nm,391 nm and 401 nm.Furthermore,the quantitative simulation analysis of metalloporphyrins was combined with experimental data.It could be found that the location rules of the four kinds of metalloporphyrins calculated absorption characteristic peaks were consistent with the experimental ones,and the relative errors of each peak were within 3%.These methods used above provide a theoretical path for analyzing and identifying unknown porphyrin compounds in petroleum.展开更多
Inspired by the recently proposed Legendre orthogonal polynomial representation for imaginary-time Green s functions G(τ),we develop an alternate and superior representation for G(τ) and implement it in the hybr...Inspired by the recently proposed Legendre orthogonal polynomial representation for imaginary-time Green s functions G(τ),we develop an alternate and superior representation for G(τ) and implement it in the hybridization expansion continuous-time quantum Monte Carlo impurity solver.This representation is based on the kernel polynomial method,which introduces some integral kernel functions to filter the numerical fluctuations caused by the explicit truncations of polynomial expansion series and can improve the computational precision significantly.As an illustration of the new representation,we re-examine the imaginary-time Green's functions of the single-band Hubbard model in the framework of dynamical mean-field theory.The calculated results suggest that with carefully chosen integral kernel functions,whether the system is metallic or insulating,the Gibbs oscillations found in the previous Legendre orthogonal polynomial representation have been vastly suppressed and remarkable corrections to the measured Green's functions have been obtained.展开更多
The coagulation time and position of micro-sized non-metallic inclusions in molten metal during ultrasonic separation process were investigated, and the motion course of micro-sized non-metallic inclusions in an ultra...The coagulation time and position of micro-sized non-metallic inclusions in molten metal during ultrasonic separation process were investigated, and the motion course of micro-sized non-metallic inclusions in an ultrasonic standing wave field was numerically simulated. The results of theoretical analysis and numerical simulation show that the movement of inclusions depends on the balance between the acoustic radiation force, effective buoyancy force and viscous drag force. It is presented that micro-sized inclusions, agglomerated at antinode-planes may be removed further with horizon tal ultrasound.``展开更多
Metal derivative/graphitic carbon nitride(g-C_(3)N_(4))association is found promising in providing sustainable hydrogen production by photocatalytic water splitting process.Number of works reported on the synthesis an...Metal derivative/graphitic carbon nitride(g-C_(3)N_(4))association is found promising in providing sustainable hydrogen production by photocatalytic water splitting process.Number of works reported on the synthesis and application of various metal based g-C_(3)N_(4)composites are increasing day by day.Mechanism of charge separation varies according to the metal candidate that gets couple with g-C_(3)N_(4).The present article thus explores the interesting chemistry behind various metal based heterojunction and demonstrates the charge separation route.A thorough investigation has been done on the current research trend in the area.As many metal free g-C_(3)N_(4)composites are reported nowadays as an alternative to metal derivatives,here compares metallic and metal free derivatives of g-C_(3)N_(4)based on four critical requirements of an industrial catalyst,ie,activity,stability,cost and toxicity.Challenges and future direction in the area are also discussed with significance.The systematic discussion and schematic illustration of charge transfer process in different heterojunctions with reference to the reported systems,given in the article can definitely contribute to the design and development of more efficient g-C_(3)N_(4)based heterojunctions in future for hydrogen production application.展开更多
Recent decline of cryosphere typified by retreat of glaciers is often explained by temperature rise due to global warming. However, the existence of glaciers shrinking since before 1950s warming accelerated suggested ...Recent decline of cryosphere typified by retreat of glaciers is often explained by temperature rise due to global warming. However, the existence of glaciers shrinking since before 1950s warming accelerated suggested that decline of cryosphere may be due to not only temperature rise, but also another possibility. As a possible cause of snow and ice melting, it has been pointed out that the surface albedo reduction due to increase of snow impurity, aeolian dust and anthropogenic pollutant, for example. To clarify the quantitative relationship between albedo and impurity in snow surface, we investigated the correlativity of turbidity and metal concentration in snow to the snow surface albedo from the simultaneous observations on the snow-covered area in Yamagata, Japan. The observed albedo shows a tendency of decrease with the turbidity increase in snow surface, we could find strong correlation between the albedo and the turbidity in 76% of contribution factor using logarithmic regression analysis. The relationship of albedo to total concentration of Fe and Al in snow surface shows the similar tendency to turbidity, we could model the relationship using logarithmic equation with high value of contribution ratio, 74% and 66%, respectively. The concentration ratio of Fe/Al is nearly constant with about 0.75, which is close to mean crustal ratio of both elements, therefore, it can be said there is a strong correlation between the albedo and the concentration of mineral particle in snow surface. We cannot find a significant correlation between the albedo and total concentration of Na in snow surface. It can be considered that Na existed as dissolved ion has not significant effect to the albedo in snow surface. These results indicate that the snow albedo correlates strongly with the particulate matter in snow surface, which is typified by mineral particle.展开更多
Gadolinium was prepared by conventional procedures of fluorination, reduction, distillation and solid state electrotransport(SSE). The electronegativities of the metals were found to have an important influence on t...Gadolinium was prepared by conventional procedures of fluorination, reduction, distillation and solid state electrotransport(SSE). The electronegativities of the metals were found to have an important influence on the electrotransport process and result of the impurity element. Meanwhile, titanium particles in the distilled gadolinium as major metallic impurities were studied by high resolution transmission electron microscopy(HRTEM) before and after solid state electrotransport. The results showed that impurities especially titanium transported from anode to cathode during SSE. In the metal before SSE, there were impurities of titanium in strip shape or embedded round shape. After SSE processing, titanium particles in the metal smaller than 50 nm in the cathode, but existed 6 to 10 times bigger in the anode.展开更多
基金Project(50671076) supported by the National Natural Science Foundation of China
文摘Long-term thermal stability of a series of Zr-based metallic glasses with different oxygen contents below their glass transition temperatures was compared based on their deductive continuous-heating-transformation diagrams created by using the corollary of Kissinger analysis method. It is found that the influence of oxygen on the long-term thermal stability of Zr-based metallic glasses exhibits at lower temperature is different from that on their short-term thermal stability presented at higher temperature. For each kind of the Zr-based metallic glasses, there is a critical heating rate, φ , which corresponds to a critical c temperature, Tc. As heating rate is smaller than φ c and onset devitrification temperature is below Tc, the glass with higher oxygen content will have longer incubation period for onset devitrification. The values of φ c and Tc are related with the glasses’ reduced glass transition temperature Trg. The improving effect of oxygen impurity on the long-term thermal stability of Zr-based metallic glasses was discovered.
文摘The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy( E ESE ) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels.
基金Project(51504036) supported by the National Natural Science Foundation of ChinaProject(2012CBA01207) supported by the National Basic Research Program of ChinaProject(2011AA03A409) supported by the National High-Tech Research and Development Program of China
文摘The distribution rules of impurities in distilled terbium metal were investigated by vacuum distillation purificationexperiment and theoretical analysis.It is found that Ti impurity in distilled terbium is220mg/kg in the initial stage of the distillationpurification,increases slowly in the middle stage,and increases rapidly in the last stage,reaching2260mg/kg,and the modifiedseparation coefficient of Ti is1/19.02.The diffusion of the impurity Ti in liquid metal can reach a quasi-equilibrium state in theinitial stage of distillation purification and the calculated results agree well with experimental results;the distribution profile ofimpurity Cu is opposite to Ti,being380mg/kg in the initial stage,decreasing linearly to290mg/kg in the last stage,and themodified separation coefficient is17.99,and the theoretical calculated results are inconsistent with the experimental result.
基金Project(51674290)supported by the National Natural Science Foundation of ChinaProject(201606370130)supported by the China Scholarship CouncilProject(2016zzts107)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘The effect of grinding on the spodumene flotation was investigated. The flotation response of spodumene ground by different mills was different, due to the variation of metal ions on spodumene surfaces caused by grinding environments and/or impurities. The samples were subjected to acid pickling treatment to remove most of the metal ions from the surfaces, and then all samples showed the same poor flotation response, which confirmed the significance of surface metal ions. Metal ion impurities may come from both grinding environments and lattice substitutions in spodumene. Density functional theory (DFT) calculation revealed that Fe and Ca could exist as lattice substitutions on the spodumene surface while Mg substitution is unlikely to occur. Furthermore, Fe is considered to be active site for the absorption of sodium oleate on the spodumene surface. Morphology analysis showed differences in particle size and shape for samples ground by different mills, resulting in different amounts of exposed surfaces. The particle size, cleavage characteristics caused by grinding environments, and metal ion impurities originated from grinding and isomorphous substitutions, play significant roles in the chemisorption of collector on the spodumene surface.
文摘The hydrogenic donor impurity states and intersubband optical absorption spectra in monolayer transition metal dichalcogenides(ML TMDs) under dielectric environments are theoretically investigated based on a two-dimensional(2D)nonorthogonal associated Laguerre basis set. The 2D quantum confinement effect together with the strongly reduced dielectric screening results in the strong attractive Coulomb potential between electron and donor ion, with exceptionally large impurity binding energy and huge intersubband oscillator strength. These lead to the strong interaction of the electron with light in a 2D regime. The intersubband optical absorption spectra exhibit strong absorption lines of the non-hydrogenic Rydberg series in the mid-infrared range of light. The strength of the Coulomb potential can be controlled by changing the dielectric environment. The electron affinity difference leads to charge transfer between ML TMD and the dielectric environment, generating the polarization-electric field in ML TMD accompanied by weakening the Coulomb interaction strength. The larger the dielectric constant of the dielectric environment, the more the charge transfer is, accompanied by the larger polarization-electric field and the stronger dielectric screening. The dielectric environment is shown to provide an efficient tool to tune the wavelength and output of the mid-infrared intersubband devices based on ML TMDs.
基金supported by the National Natural Science Foundation of China (No. 50674018)
文摘The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size less than 0.1 mm was most effective for acid leaching; the extraction yield of impurities was increased by 9% with HF leaching compared with HCl leaching and HNO3 leaching, and increased by 7% with ultrasonic stirring compared with mechanical stirring. The principle of hydrometallurgical purification of metallurgical grade silicon under ultrasonic fields was also discussed.
基金the supports from the National Natural Science Foundation of China(21822810,21476260,and 21838011).
文摘In this work,the octaethyl-porphyrins with different central metals(M-OEP,M=Ni,VO,Cu,Co)were used to investigate the ground-state molecular structure,electron distribution and UV-spectra properties on molecular level by density functional theory(DFT).The results showed that the calculation structure parameters of metalloporphyrins agreed well with the experimental value.According to the Natural Bond Orbital(NBO)analysis,the charge distribution of different metalloporphyrins was found that the charge values of the central metal M decreased with the order of VO<Ni<Co<Cu,while the bonding strength between M and the coordinating atom N was VO>Ni>Co>Cu.At the same time,the frontier molecular orbital calculations showed that the SOMO energy of VO(OEP)molecules in the open-shell system was higher than that of Co(OEP)and Cu(OEP),which means that its UV absorption characteristic peak would be red-shifted.In addition,the IEFPCM model of Time-dependent Density functional theory(TD-DFT)was further utilized to simulate the four substance in toluene solution:Co(OEP),Ni(OEP),Cu(OEP)and VO(OEP),and the Soret band peaks were calculated respectively as:382 nm,383 nm,391 nm and 401 nm.Furthermore,the quantitative simulation analysis of metalloporphyrins was combined with experimental data.It could be found that the location rules of the four kinds of metalloporphyrins calculated absorption characteristic peaks were consistent with the experimental ones,and the relative errors of each peak were within 3%.These methods used above provide a theoretical path for analyzing and identifying unknown porphyrin compounds in petroleum.
基金Project supported by the National Natural Science Foundation of China(Grant No.11504340)
文摘Inspired by the recently proposed Legendre orthogonal polynomial representation for imaginary-time Green s functions G(τ),we develop an alternate and superior representation for G(τ) and implement it in the hybridization expansion continuous-time quantum Monte Carlo impurity solver.This representation is based on the kernel polynomial method,which introduces some integral kernel functions to filter the numerical fluctuations caused by the explicit truncations of polynomial expansion series and can improve the computational precision significantly.As an illustration of the new representation,we re-examine the imaginary-time Green's functions of the single-band Hubbard model in the framework of dynamical mean-field theory.The calculated results suggest that with carefully chosen integral kernel functions,whether the system is metallic or insulating,the Gibbs oscillations found in the previous Legendre orthogonal polynomial representation have been vastly suppressed and remarkable corrections to the measured Green's functions have been obtained.
文摘The coagulation time and position of micro-sized non-metallic inclusions in molten metal during ultrasonic separation process were investigated, and the motion course of micro-sized non-metallic inclusions in an ultrasonic standing wave field was numerically simulated. The results of theoretical analysis and numerical simulation show that the movement of inclusions depends on the balance between the acoustic radiation force, effective buoyancy force and viscous drag force. It is presented that micro-sized inclusions, agglomerated at antinode-planes may be removed further with horizon tal ultrasound.``
文摘Metal derivative/graphitic carbon nitride(g-C_(3)N_(4))association is found promising in providing sustainable hydrogen production by photocatalytic water splitting process.Number of works reported on the synthesis and application of various metal based g-C_(3)N_(4)composites are increasing day by day.Mechanism of charge separation varies according to the metal candidate that gets couple with g-C_(3)N_(4).The present article thus explores the interesting chemistry behind various metal based heterojunction and demonstrates the charge separation route.A thorough investigation has been done on the current research trend in the area.As many metal free g-C_(3)N_(4)composites are reported nowadays as an alternative to metal derivatives,here compares metallic and metal free derivatives of g-C_(3)N_(4)based on four critical requirements of an industrial catalyst,ie,activity,stability,cost and toxicity.Challenges and future direction in the area are also discussed with significance.The systematic discussion and schematic illustration of charge transfer process in different heterojunctions with reference to the reported systems,given in the article can definitely contribute to the design and development of more efficient g-C_(3)N_(4)based heterojunctions in future for hydrogen production application.
文摘Recent decline of cryosphere typified by retreat of glaciers is often explained by temperature rise due to global warming. However, the existence of glaciers shrinking since before 1950s warming accelerated suggested that decline of cryosphere may be due to not only temperature rise, but also another possibility. As a possible cause of snow and ice melting, it has been pointed out that the surface albedo reduction due to increase of snow impurity, aeolian dust and anthropogenic pollutant, for example. To clarify the quantitative relationship between albedo and impurity in snow surface, we investigated the correlativity of turbidity and metal concentration in snow to the snow surface albedo from the simultaneous observations on the snow-covered area in Yamagata, Japan. The observed albedo shows a tendency of decrease with the turbidity increase in snow surface, we could find strong correlation between the albedo and the turbidity in 76% of contribution factor using logarithmic regression analysis. The relationship of albedo to total concentration of Fe and Al in snow surface shows the similar tendency to turbidity, we could model the relationship using logarithmic equation with high value of contribution ratio, 74% and 66%, respectively. The concentration ratio of Fe/Al is nearly constant with about 0.75, which is close to mean crustal ratio of both elements, therefore, it can be said there is a strong correlation between the albedo and the concentration of mineral particle in snow surface. We cannot find a significant correlation between the albedo and total concentration of Na in snow surface. It can be considered that Na existed as dissolved ion has not significant effect to the albedo in snow surface. These results indicate that the snow albedo correlates strongly with the particulate matter in snow surface, which is typified by mineral particle.
基金Project supported by Major State Basic Research Development Program of China(973 Program:2012CBA01207)the National High Technology Research and Development Program of China(863 Program:2011AA03A409)
文摘Gadolinium was prepared by conventional procedures of fluorination, reduction, distillation and solid state electrotransport(SSE). The electronegativities of the metals were found to have an important influence on the electrotransport process and result of the impurity element. Meanwhile, titanium particles in the distilled gadolinium as major metallic impurities were studied by high resolution transmission electron microscopy(HRTEM) before and after solid state electrotransport. The results showed that impurities especially titanium transported from anode to cathode during SSE. In the metal before SSE, there were impurities of titanium in strip shape or embedded round shape. After SSE processing, titanium particles in the metal smaller than 50 nm in the cathode, but existed 6 to 10 times bigger in the anode.