期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Spontaneous Magnetic Transitions and Corresponding Magnetoelastic Properties of Intermetallic Compounds RMn_2Ge_2(R=Gd, Tb and Dy)
1
作者 张光富 TIAN Ye DENG Yangbao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期566-570,共5页
The spontaneous magnetic transitions and corresponding magnetoelastic properties of intermetallic compounds RMn2Ge2(R=Gd, Tb and Dy) were investigated by using the X-ray diffraction method and magnetic measurement. ... The spontaneous magnetic transitions and corresponding magnetoelastic properties of intermetallic compounds RMn2Ge2(R=Gd, Tb and Dy) were investigated by using the X-ray diffraction method and magnetic measurement. The results showed that the compounds experience two magnetic transitions, namely the second-order paramagnetic to antiferromagnetic transition at temperature TN(TN=368, 423 and 443 K for Gd Mn2 Ge2, Tb Mn2 Ge2 and Dy Mn2 Ge2, respectively) and the first-order antiferromagnetic-ferrimagnetic transition at temperature Tt(Tt=96, 80 and 40 K for Gd Mn2 Ge2, Tb Mn2 Ge2 and Dy Mn2 Ge2, respectively) as the temperature decreases. The temperature dependence of the lattice constant a(T) displays a negative magnetoelastic anomaly at the second-order transition point TN and, at the first-order transition Tt, a increases abruptly for Gd Mn2 Ge2 and Tb Mn2 Ge2, Da/a about 10^(-3). Nevertheless, the lattice constant c almost does not change at these transition points indicating that such magnetoelastic anomalies are mainly contributed by the Mn-sublattice. The transitions of the magnetoelastic properties are also evidenced on the temperature dependence of magnetic susceptibility χ. The first-order transition behavior at Tt is explained by the Kittel mode of exchange inversion. 展开更多
关键词 rare earth-transition metal compound magnetic transition magnetoelastic property
下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
2
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery Redox kinetic Transition metal compounds catalyst Multiple metals/anions
下载PDF
STUDY ON DEGRADATION OF LDPE CATALYZED BY MULTI-VALENCE METALLIC ORGANIC COMPOUNDS AT COMPOST TEMPERATURE
3
作者 于九皋 陈崧哲 《Transactions of Tianjin University》 EI CAS 2001年第4期290-293,共4页
The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost... The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost environment.The mechanical properties,viscosity average molecular weight (M η) of PE and hydroperoxide (POOH) concentration in the samples were measured.FT IR and DSC were also applied to characterize some samples.It was shown that the above mentioned metallic organic compounds can catalyze the degradation of LDPE efficiently.After 2 months aging,all samples with catalysts became fragile and the M η of the material decreased dramatically.Furthermore,the concentration of carbonyl and the degree of crystallinity of the material increased with the aging time. 展开更多
关键词 polyethylene multi valence metallic organic compound COMPOST DEGRADATION HYDROPEROXIDE
下载PDF
AROMATIC BOND INCLUDING METALLIC ATOM IN COORDINATE COMPOUNDS AND SOME OF ITS PROPERTIES
4
作者 Jing Jiang LIU Yun Ti CHENDepartment of Chemistry,Nankai University,Tianjin,300071R.Kent MURMANNDepartment of Chemistry,University of Missouri Columbia MO 65211,U.S.A 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第5期363-366,共4页
Aromatic bond including metallic atom (Ni) is investigated by EHMO calculation.The NMR spectra and the mechanism for hydrolysis are discussed on the ground of results of computation.
关键词 Ni PN AROMATIC BOND INCLUDING metallic ATOM IN COORDINATE compoundS AND SOME OF ITS PROPERTIES ITS
下载PDF
STUDIES ON THE PROPERTIES OF SCHIFF BASE TYPE ARYLMERCURY COMPOUNDS Ⅲ TRANSMETALLATION REACTION OF SCHIFF BASE TYPE ARYLMERCURY COMPOUNDS WITH METALLIC TIN
5
作者 Kui Ling DING Yang Jie Wu Yang WANG Department of Chemistry,Zhengzhou University,Zhengzhou 450052Li YANG Lanzhou University,National Applied Laboratory of Organic Chemistry,Lanzhou,730000 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第3期221-224,共4页
The transmetallation reaction of 4 Schiff base type arylmercury compounds with metallic tin has been carried out in refluxing xylene.It was found that the reaction proceeds in the same manner as that of chloro[2-(phen... The transmetallation reaction of 4 Schiff base type arylmercury compounds with metallic tin has been carried out in refluxing xylene.It was found that the reaction proceeds in the same manner as that of chloro[2-(phenylazo)phenyl]mercury(Ⅱ) to give dichlorobisaryltin(Ⅳ).The ~1H NMR spectra of the products provide evidence for the presence of N→Sn intramolecular coordination.The formation of dichlorobisaryltin(Ⅳ)as a unique product probably arises from the N→Sn intramolecular coordination which results in the increasing of the stability of the molecule. 展开更多
关键词 STUDIES ON THE PROPERTIES OF SCHIFF BASE TYPE ARYLMERCURY compoundS TRANSMETALLATION REACTION OF SCHIFF BASE TYPE ARYLMERCURY compoundS WITH metallic TIN Sn
下载PDF
A review of anode materials for sodium ion batteries
6
作者 Syed Ali Riza XU Ri-gan +6 位作者 LIU Qi Muhammad Hassan YANG Qiang MU Dao-bin LI Li WU Feng CHEN Ren-jie 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期743-769,共27页
Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which ar... Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions. 展开更多
关键词 Sodium ion batteries ANODE Carbon material metallic compound ORGANIC
下载PDF
A Reflectron Time-of-Flight Mass Spectrometer with a Nano-Electrospray Ionization Source for Study of Metal Cluster Compounds
7
作者 吴小虎 谢华 +3 位作者 刘志凌 苏海峰 林水潮 唐紫超 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第4期401-406,I0001,共7页
An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-o... An experiment facility has been set up for the study of metal cluster compounds in our laboratory, which consists of a nano-electrospray ionization source, an ion transmission and focus system, and a reflectron time-of-fight mass spectrometer. Taking advantage of the nano-electrospray ionization source, polyvalent ions are usually produced in the "ionization" process and the obtained mass resolution of the equipment is over 8000. The molecular ion peaks of metal cluster compounds [Au20(PPhpy2)10Cl2](SbF6)4, where PPhpy2=bis(2- pyridyl)phenylphosphine, and [AuaAg2(C)L6](BF4)4, where L=2-(diphenylphosphino)-5- methylpyridine, are distinguished in the respective mass spectrum, accompanied by some fragment ion peaks. In addition, the mass-to-charge ratios of the parent ions are determi- nated. Preliminary results suggest that the device is a powerful tool for the study of metal cluster compounds. It turns out that the information obtained by the instrumentation serves as an essential supplement to single crystal X-ray diffraction for structure characterization of metal cluster compounds. 展开更多
关键词 Nano-electrospray ionization source Ion transmission and focus system Reflectron time-of-flight mass spectrometer Metal cluster compounds Single crystal X-ray diffraction
下载PDF
SYNTHESES OF TETRAHEDRAL METAL CLUSTER COMPOUNDS
8
作者 Yuan Qi YIN Hong Sui SUN Zhuan Yun ZHAO 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第7期551-554,共4页
The carbyne compound [Br(CO)_2(Py)_2Mo(≡CC_6H_5)] (Py=pyridine) (1a) reacts with Co_2 (CO)_8, Fe_2(CO)_9 and Mn_2 (CO)_(10) to give tetrahedral tri-metal cluster compounds Co_2Mo(μ_3-CC_6H_5)Br(CO)_8(Py)_2 (2), Fe_2... The carbyne compound [Br(CO)_2(Py)_2Mo(≡CC_6H_5)] (Py=pyridine) (1a) reacts with Co_2 (CO)_8, Fe_2(CO)_9 and Mn_2 (CO)_(10) to give tetrahedral tri-metal cluster compounds Co_2Mo(μ_3-CC_6H_5)Br(CO)_8(Py)_2 (2), Fe_2Mo(μ_3-CC_6H_5) Br(CO)_9(Py)_2 (3) and Mn_2Mo(μ_3-CC_6H_5)Br(CO)_(10) (Py)_2 (4) respectively. Tri-metal cluster compound Co_2Mo(μ_3-CC_6H_5)Br(CO)_8-(bipy) (bipy=α,α'dipyridyl) (5) is prepared in a similar reaction sequence from [Br(CO)_2(bipy)Mo(≡CC_6H_5)] (1b) and Co_2(CO)_8. IR, ~1H and ^(13)C NMR spectral data of these compounds are reported and discussed. The crystal structure of compound (5) has been determined by X-ray diffraction. 展开更多
关键词 CO BR Hs SYNTHESES OF TETRAHEDRAL METAL CLUSTER compoundS CO HO
下载PDF
Technology Development and Production of Certain Chemical Platinum Metals Compounds at JSC "Krastsvetmet"
9
作者 ILYASHEVICH V. D. PAVLOVA E. I. KORITSKAYA N. G. MAMONOV S. N. SHULGIN D. R. MALTSEV E. V. 《贵金属》 CAS CSCD 北大核心 2012年第A01期85-87,共3页
In recent years JSC "Krastsvetmet" has successfully developed the production of chemically pure compounds of precious metals.Currently methods have been developed and facilities have been provided for indust... In recent years JSC "Krastsvetmet" has successfully developed the production of chemically pure compounds of precious metals.Currently methods have been developed and facilities have been provided for industrial production of the following platinum metals compounds:Rhodium(Ⅲ) chloride hydrate,rhodium(Ⅲ) chloride solution,rhodium(Ⅲ) nitrate solution,rhodium(Ⅲ) iodide,rhodium(Ⅲ) sulfate,hydrated rhodium(Ⅲ) oxide,ammonium hexachlororodiate,rhodium(Ⅲ) phosphate solution,rhodium electrolytes;Iridium(Ⅳ) chloride hydrate,iridium(Ⅲ) chloride hydrate,ammonium hexachloroiridate(Ⅳ),hexa chloriridium acid solution,hexachloriridium crystalline acid;Ruthenium(Ⅲ) chloride hydrate,ruthenium(Ⅳ) hydroxide chloride,ruthenium(Ⅳ) hydroxide chloride solution,ammonium hexachlororuthenate,ruthenium(Ⅲ) chloride solution,potassium,diaquaoctachloronitrido diruthenate.The quality of the production meets the requirements of Russian and foreign consumers. 展开更多
关键词 refined metal feeding materials recovery process solutions crystal hydrates precious metals chemical compounds
下载PDF
Magnetocaloric effects in Fe_4MnSi_3B_x interstitial compounds
10
作者 Yongli WU O. Tegus +3 位作者 Weiguang ZHANG S. Yiriyoltu B. Mend Songlin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第5期397-400,共4页
The magnetic properties and magnetocaloric effect in Fe4MnSi3B~ compounds with x=0, 0.05, 0.10, 0.15, 0.20, 0.25 have been investigated. X-ray diffraction study shows that all these compounds investigated crystallize ... The magnetic properties and magnetocaloric effect in Fe4MnSi3B~ compounds with x=0, 0.05, 0.10, 0.15, 0.20, 0.25 have been investigated. X-ray diffraction study shows that all these compounds investigated crystallize in the MnsSi3-type structure with space group P63/mcm. Boron insertion in the host ternary silicide Fe4MnSi3 does not change the crystal symmetry, only leads to an increase of the lattice parameters, indicating the B atoms entered the interstitial sites. With increasing B content, the Curie temperature shifts to higher temperatures. The maximal magnetic-entropy changes of the Fe4MnSi3Bx compounds with x=0, 0.10 and 0.20 are about 1.8 J/(kg.K), 1.8 J/(kg-K) and 1.6 J/(kg.K), respectively, for a field change from 0 to 1.5 T. 展开更多
关键词 Transition metal interstitial compounds Magaetocatoric effect Magnetic properties
下载PDF
Examination of Polymeric Azomethine Compounds and Their Transition Metal Complexes by Using XRF and XRD Technique
11
作者 Omer Sogut Betül Demirezen Kara +2 位作者 Gokhan Apaydin Erhan Cengiz Ayse Kazanc 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第1期328-332,共5页
In this study,the electronic transition properties and structural analysis of the metal complexes(Ni(Ⅱ),Co(Ⅱ),Cu(Ⅱ)and Mn(Ⅱ))of three different polymer ligands were performed by using XRF and X-ray diffraction(XRD... In this study,the electronic transition properties and structural analysis of the metal complexes(Ni(Ⅱ),Co(Ⅱ),Cu(Ⅱ)and Mn(Ⅱ))of three different polymer ligands were performed by using XRF and X-ray diffraction(XRD)techniques,respectively.The structural analysis of the polymers and their complexes were performed by XRD technique and some of the polymers were found to be in the face-centred cubic(fcc)structure.In addition,the values of the present K X-ray intensity ratios are significantly greater than the values reported in literature. 展开更多
关键词 XRF XRD Polymeric azomethine compounds and transition metal complexes
下载PDF
CHARACTERIZATION OF SOME SCHIFF BASES OF HETEROCYCLIC COMPOUNDS AND THEIR TRANSITION METAL COMPLEXES
12
作者 Geng ZHANG Jun Ming TANG Quan Ling LOU Zan SHI Department of Chemistry,Henan Normal University,Xinxiang,453002 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第9期681-682,共2页
Some new Schiff bases were synthesized by the condensation of equimolar quantities of salicylaldehyde and 2-amino-5-phenylazo-pyridine or its derivatives in dry benzene(1):Metal complexes of the type ML_2and M'L_3... Some new Schiff bases were synthesized by the condensation of equimolar quantities of salicylaldehyde and 2-amino-5-phenylazo-pyridine or its derivatives in dry benzene(1):Metal complexes of the type ML_2and M'L_3 where M=Cu^(2+),Co^(2+),Ni^(2+),Mn^(2+)Pd^(2+),M'=Fe^(3+)and L=different newly synthesized monobasic Schiff bases were prepared in absolute ethanolic medium(2)and characterized by elementary analysis,conductance measurements,infrared spectra,electronic spectra,magnetic moments studies. 展开更多
关键词 CHARACTERIZATION OF SOME SCHIFF BASES OF HETEROCYCLIC compoundS AND THEIR TRANSITION METAL COMPLEXES
下载PDF
Ultra-deep Removal of Metal Ions from Coal Tar by Complexation:Experimental Studies and Density Functional Theory Simulations
13
作者 Wu Hao Wei Hongyuan Li Wangliang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期127-135,共9页
As one of the important aspects of upgrading coal tar,the ultra-deep removal of metal ions via the complexation method was investigated by screening four complexing agents and performing density functional theory(DFT)... As one of the important aspects of upgrading coal tar,the ultra-deep removal of metal ions via the complexation method was investigated by screening four complexing agents and performing density functional theory(DFT)simulations.Analysis of the compositions and contents of the metallic compounds in the coal tar revealed that the main components were iron and calcium naphthenates.Direct filtration reduced the mechanical impurity content from 0.24%to 0.0752%,indicating that most of the large particles could be easily removed.Among the four complexing agents,namely,acetic acid,oxalic acid,citric acid,and ethylenediaminetetraacetic acid,oxalic acid exhibited the best demetallization performance.The DFT simulations suggested that the high performance of oxalic acid originated from its 1:1 coordination mode,rigid dicarboxyl structure,and greater binding energy. 展开更多
关键词 COMPLEXATION metallic compounds coal tar UPGRADING density functional theory
下载PDF
Electrocatalytic oxygen evolution activities of metal chalcogenides and phosphides:Fundamentals,origins,and future strategies 被引量:1
14
作者 Xiaolin Hu Ronghua Wang +2 位作者 Wenlin Feng Chaohe Xu Zidong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期167-191,I0006,共26页
The development of inexpensive and efficient electrocatalysts is key to commercializing energy-related electrocatalytic techniques such as water electrolyzers and metal-air batteries.In particular,novel oxygen evoluti... The development of inexpensive and efficient electrocatalysts is key to commercializing energy-related electrocatalytic techniques such as water electrolyzers and metal-air batteries.In particular,novel oxygen evolution reaction(OER)pre-catalysts,such as transition metal chalcogenides(TMCs)and phosphides(TMPs),have evolved in recent years from traditional stable OER electrocatalysts,which show superior OER electrocatalytic performance compared with transition metal oxides(TMOs)or(oxy)hydroxides(TMOHs).In this feature article,we summarize recent advances in the development of TMCand TMP-based OER electrocatalysts,as well as approaches to improve the OER performance in terms of morphology,structure,composition,surface engineering,lattice-strained and in-situ transformation in the electrolysis process.In particular,the electrochemical stability of TMCs and TMPs in alkaline electrolytes and the evolution of morphology,structure and composition under OER conditions are discussed.In the last section,we discuss the challenges that need to be addressed in this specific area of research and the implications for further research. 展开更多
关键词 Oxygen evolution reaction ELECTROCATALYSIS Pre-catalysts Modulated strategies Structure-activity relationships Transition metal base compounds
下载PDF
Research progress of transition metal compounds as bifunctional catalysts for zinc-air batteries 被引量:1
15
作者 Yan Ran Changfan Xu +3 位作者 Deyang Ji Huaping Zhao Liqiang Li Yong Lei 《Nano Research Energy》 2024年第1期78-100,共23页
Zinc-air batteries(ZABs)are widely studied because of their high theoretical energy density,high battery voltage,environmental protection,and low price.However,the slow kinetics of oxygen reduction reaction(ORR)and ox... Zinc-air batteries(ZABs)are widely studied because of their high theoretical energy density,high battery voltage,environmental protection,and low price.However,the slow kinetics of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)on the air electrode limits the further application of ZABs,so that how to develop a cheap,efficient,and stable catalyst with bifunctional catalytic activity is the key to solving the development of ZABs.Transition metal compounds are widely used as cathode materials for ZABs due to their low cost,high electrocatalytic activity,and stable structure.This review summarizes the research progress of transition metal compounds as bifunctional catalysts for ZABs.The development history,operation principle,and mechanism of ORR and OER reactions are introduced first.The application and development of transition metal compounds as bifunctional catalysts for ZABs in recent years are systematically introduced,including transition metal oxides(TMOs),transition metal nitrides(TMNs),transition metal sulfides(TMSs),transition metal carbides(TMCs),transition metal phosphates(TMPs),and others.In addition,the shortcomings of transition metal compounds as bifunctional catalysts for ZABs were summarized and reasonable design strategies and improvement measures were put forward,aiming at providing a reference for the design and construction of high-performance ZABs cathode materials.Finally,the challenges and future in this field are discussed and prospected. 展开更多
关键词 transition metal compounds zinc-air batteries bifunctional catalysts ELECTROCHEMICAL air electrode
原文传递
Mechanism research progress on transition metal compound electrode materials for supercapacitors
16
作者 Zhi-Hui Xu Xue-Lei Li +4 位作者 Qing-Wen Li Kai Lv Jing-Shun Liu Xiu-Kun Hang Aruuhan Bayaguud 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4076-4098,共23页
Supercapacitors(SCs)have remarkable energy storage capabilities and have garnered considerable interest due to their superior power densities and ultra-long cycling characteristics.However,their comparatively low ener... Supercapacitors(SCs)have remarkable energy storage capabilities and have garnered considerable interest due to their superior power densities and ultra-long cycling characteristics.However,their comparatively low energy density limits their extensive application in large-scale commercial applications.Electrode materials directly affect the performance of SCs.Thus,the development of cutting-edge electrode materials and modification of their morphological and structural properties are vital for advancing the performance of SCs.Transition metal compounds have a high specific capacity and good cycling durability,making them the most promising electrode active materials for high-energy density SCs.Nevertheless,their inadequate conductivity,unfavorable ion diffusion rates,substantial volume expansion and phase transitions during charging and discharging are obstacles to their stable and efficient integration into SCs.To address these challenges,this study provides a comprehensive summary of the current advancements in transition metal nanomaterials as electrode materials for SCs,an overview of the current research status,and the prevailing challenges.Furthermore,this study highlights synthetic techniques and management strategies for electrode materials derived from transition metal compounds,targeting the resolution of the aforementioned challenges.Finally,a concise discussion is provided on the future directions of SC development,with an emphasis on the utilization of transition metal compound electrode materials. 展开更多
关键词 SUPERCAPACITORS Transition metal compounds electrode Existing problems Synthetic methods Regulation strategies
原文传递
The homogenous growth of Co-based coordination compound on graphene nanosheet for high-performance K-organic battery and its reaction mechanism
17
作者 Qian-Qian Peng Yi-Ting Wang +3 位作者 Shuo Qi Yao Xiao Yong Wang Shuang-Qiang Chen 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1622-1634,共13页
Metal coordination compounds(MCCs)are gaining popularity for potassium-ion batteries(PIBs)owing to their tuneable structure,multiple reaction sites,low cost and unique morphology.However,they are generally subjected t... Metal coordination compounds(MCCs)are gaining popularity for potassium-ion batteries(PIBs)owing to their tuneable structure,multiple reaction sites,low cost and unique morphology.However,they are generally subjected to intrinsic features of the sluggish ionic diffusion coefficient,low electronic conductivity and slow kinetics.Herein,a new MCC material of cobalt-1,3,5-trioxy-2,4,6-triamino-benzo(Co-TB)coordination compound was synthesized and homogenously grown on the surface of graphene nanosheets(GNS),forming a Co-TB@GNS composite with enhanced electronic conductivity and flexible capability.Benefiting from the overall enhanced conductivity,high surface area and abundant activated K-storage sites,Co-TB@GNS electrodes have exhibited superior cycling performance with high reversible capacities(312 mAh·g^(-1)after 100 cycles at 100 mA·g^(-1),224 mAh·g^(-1)after 500 cycles at 1 A·g^(-1))and better rate performances compared with the pure Co-TB compound when served as PIB's anodes.Furthermore,multiple in-situ measurement techniques have jointly confirmed that the organic functional groups(C=O,C=N and C=C of benzene rings)and Co^(2+)in Co-TB are the main reversible K-storage sites,including in-situ Fourier transform infrared spectroscopy(FTIR)and X-ray diffraction(XRD),and partial capacity contribution is originated from GNS by the apparent K-storage behavior in the in-situ XRD pattern,proving the possibility of K-storage for metal-organic materials. 展开更多
关键词 Metal coordination compounds Potassiumion battery Cobalt coordination compound K-storage mechanism
原文传递
Metal–organic compounds as promising anode materials for potassium ion batteries: A mini review
18
作者 Jinquan Wen Qian Liu +2 位作者 Ling Bai Zhen-Dong Huang Yanwen Ma 《Energy Reviews》 2024年第1期90-108,共19页
Potassium-ion batteries(PIBs)represent one of the most promising alternatives to lithium-ion batteries(LIBs),owing to their exceptional attributes such as high voltages,potent power capabilities,and cost-effectiveness... Potassium-ion batteries(PIBs)represent one of the most promising alternatives to lithium-ion batteries(LIBs),owing to their exceptional attributes such as high voltages,potent power capabilities,and cost-effectiveness.Nonetheless,challenges arise from the sluggish kinetics and significant volume expansion observed during the insertion/extraction of large-radii potassium ions,leading to subpar rate performance and considerable capacity degradation in potassium-ion batteries.Consequently,it becomes imperative to explore advanced anode materials exhibiting high electrochemical activity and robust structural stability.In this regard,the present review focuses on recent progress in metal-organic compounds(MOCs)as anode materials for potassium-ion batteries,systematically discussing their outstanding merits from the perspective of metal speciation.Additionally,the principal mechanism of K ion storage within relevant MOCs is presented.Furthermore,a comprehensive summary of existing drawbacks that hinder the broader application of MOCs-based materials is provided,along with proposed guidelines and strategies for addressing the inferior performance characteristics.This review serves to illuminate the development of MOCs-based anode materials for potassium-ion batteries and offers a valuable reference for future research endeavors. 展开更多
关键词 Potassium ion batteries Anode materials Metal organic compounds Metals organic frameworks
原文传递
A novel process for the recovery of iron,titanium,and vanadium from vanadium-bearing titanomagnetite:sodium modification–direct reduction coupled process 被引量:12
19
作者 Yi-min Zhang Ling-yun Yi +5 位作者 Li-na Wang De-sheng Chen Wei-jing Wang Ya-hui Liu Hong-xin Zhao Tao Qi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第5期504-511,共8页
A sodium modification–direct reduction coupled process was proposed for the simultaneous extraction of V and Fe from vanadium- bearing titanomagnetite. The sodium oxidation of vanadium oxides to water-soluble sodium ... A sodium modification–direct reduction coupled process was proposed for the simultaneous extraction of V and Fe from vanadium- bearing titanomagnetite. The sodium oxidation of vanadium oxides to water-soluble sodium vanadate and the transformation of iron oxides to metallic iron were accomplished in a single-step high-temperature process. The increase in roasting temperature favors the reduction of iron oxides but disfavors the oxidation of vanadium oxides. The recoveries of vanadium, iron, and titanium reached 84.52%, 89.37%, and 95.59%, respectively. Moreover, the acid decomposition efficiency of titanium slag reached 96.45%. Compared with traditional processes, the novel process provides several advantages, including a shorter flow, a lower energy consumption, and a higher utilization efficiency of vanadium-bearing titanomagnetite resources. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Energy utilization IRON Leaching Magnetic separation Metal recovery metallic compounds Oxides SLAGS SODIUM TITANIUM VANADIUM
下载PDF
Structure and Magnetic Properties of Fe1-xCx Solid Solution Prepared by Mechanical Alloying 被引量:2
20
作者 许士跃 张金仓 +3 位作者 钟敏建 陈杭德 张正明 何正明 《Journal of Shanghai University(English Edition)》 CAS 2005年第6期550-556,共7页
Supersaturated solid solutions Fe1-xCx (0≤x≤0.9 ) of wide composition range have been prepared by mechanical alloying process. Nanocrystalline phase was formed for 0 ≤ x ≤ 0.67 and a large grain phase for 0.75 ... Supersaturated solid solutions Fe1-xCx (0≤x≤0.9 ) of wide composition range have been prepared by mechanical alloying process. Nanocrystalline phase was formed for 0 ≤ x ≤ 0.67 and a large grain phase for 0.75 ≤ x ≤ 0.9. The large fraction of graphite volume puts off formation of nanocrystalline phase for high carbon content. In the large grain phase, magnetization follows simple magnetic dilution, and eoereivity He is mainly due to dissolution of carbon at grain boundaries. In the nanocrystalline phase the alloying effect of carbon is revealed by a distinct reduction of average magnetic moment. The increasing lattice constant with increasing carbon content is observed for x ≤ 0.5, suggesting that the high carbon concentration may enhance diffusion of carbon into the Fe lattice. It shows a discontinuity in the Hc variation with a grain size D of nanocrystalline phase. For small grain D below the critical value, Hc increases with D. For a large grain D, Hc decreases with increasing D. The solubility limit of carbon in a-Fe extended by nanocry- stalline phase formation is discussed. 展开更多
关键词 mechanical alloying transition metal alloys and compounds MAGNETIZATION nanostructured materials
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部