期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fabrication,structure and compression performance of Inconel 617 superalloy honeycomb
1
作者 WANG Hongwei,WEI Zunjie,ZHU Zhaojun,and LI Zhiwei School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期199-204,共6页
Inconel 617 metal honeycombs with designed porosity,cell size and cell morphology were fabricated using fused deposition modelling rapid prototype manufacturing.The microstructure and compression properties of Inconel... Inconel 617 metal honeycombs with designed porosity,cell size and cell morphology were fabricated using fused deposition modelling rapid prototype manufacturing.The microstructure and compression properties of Inconel 617 metal honeycomb were studied.The results indicate that Inconel 617 metal honeycomb structure can be fabricated using fused deposition modelling technique,the processes are simple and the size of honeycomb is controllable.The sintered Inconel 617 honeycombs consist of matrix,γ phase,and grain boundary precipitates,Cr7C3 and M23C6 type carbides.The honeycomb microstructure sintered using fine powder particles are denser than that of coarse powder particles.Yield strength and Young’s modulus increase with the relative density of honeycomb increasing.But the influence of the relative density on Young’s modulus is greater than that of yield strength. 展开更多
关键词 rapid prototype fused deposition modelling metal honeycomb compression properties
下载PDF
A Design Modification Approach to Utilize the Benefits of Metal Additive Manufacturing Adoption 被引量:1
2
作者 Jun Hao Tan Wee Koon Woon Wai Leong Eugene Wong 《Journal of Materials Science and Chemical Engineering》 2016年第7期53-58,共7页
Existing Metal Additive Manufacturing processes are fast approaching a matured stage in which a wide range of possibilities are available for the incorporation of the rapid fabrication technology to current industrial... Existing Metal Additive Manufacturing processes are fast approaching a matured stage in which a wide range of possibilities are available for the incorporation of the rapid fabrication technology to current industrial practices. In terms of design conventions, the limitless geometrical freedom allows complex structures including cellular internal grids and lattices to be formed without additional tooling. Repair parts and leveraging components can also be produced on demand when required especially for military assets where large volume of inventory is constantly maintained to ensure operational readiness. In this exemplary work, a feasibility study on using stainless steel material with integrated cellular design to manufacture a guide bracket found on a military vehicle via Selective Laser Melting process was conducted. The results showed appreciably better mechanical performance in using a stainless steel honeycomb as compared to the aluminum alloy used for the original component together with a faster production route through SLM. 展开更多
关键词 Selective Laser Melting Design Optimization LIGHTWEIGHT Additive Manufacturing metallic honeycomb
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部