In this paper, a modified sub-gridding scheme that hybridizes the conventional finite-difference time-domain(FDTD)method and the unconditionally stable locally one-dimensional(LOD) FDTD is developed for analyzing ...In this paper, a modified sub-gridding scheme that hybridizes the conventional finite-difference time-domain(FDTD)method and the unconditionally stable locally one-dimensional(LOD) FDTD is developed for analyzing the periodic metallic nanoparticle arrays. The dispersion of the metal, caused by the evanescent wave propagating along the metal-dielectric interface, is expressed by the Drude model and solved with a generalized auxiliary differential equation(ADE) technique.In the sub-gridding scheme, the ADE–FDTD is applied to the global coarse grids while the ADE–LOD–FDTD is applied to the local fine grids. The time step sizes in the fine-grid region and coarse-grid region can be synchronized, and thus obviating the temporal interpolation of the fields in the time-marching process. Numerical examples about extraordinary optical transmission through the periodic metallic nanoparticle array are provided to show the accuracy and efficiency of the proposed method.展开更多
Monodisperse Fe-based and Co-based nanopar-ticles exhibit unique magnetic properties. They play important roles in magnetic storage and biomedical application. Their chemical synthesis and performance enhancement draw...Monodisperse Fe-based and Co-based nanopar-ticles exhibit unique magnetic properties. They play important roles in magnetic storage and biomedical application. Their chemical synthesis and performance enhancement draw a lot of study interest. Investigations of magnetic metallic nano-particles are very active in many scientific fields. This paper reviews the present advances in chemical synthesis, perfor-mance enhancement, and potential applications of monodis-perse Fe-based and Co-based nanoparticles.展开更多
Nanofertilizers increase efficiency and sustainability of agricultural crop production.Due to their nanosize properties,they have been shown to increase productivity through target delivery or slow release of nutrient...Nanofertilizers increase efficiency and sustainability of agricultural crop production.Due to their nanosize properties,they have been shown to increase productivity through target delivery or slow release of nutrients,thereby limiting the rate of fertilizer application required.Nanofertilizers can be synthesized via different approaches ranging from physical and chemical to green(biological)synthesis.The green approach is preferable because it makes use of less chemicals,thereby producing less chemical contamination and it is safer in comparison to physicochemical approaches.Hence,discussion on the use of green synthesized nanoparticles as nanofertilizers is pertinent for a sustainable approach in agriculture.This review discusses recent developments and applications of biologically synthesized metallic nanoparticles that can also be used as nanofertilizers,as well as their uptake mechanisms for plant growth.Toxicity concerns of nanoparticle applications in agriculture are also discussed.展开更多
Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms,...Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms, respectively. The total interaction energy function for any rnetallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terrns are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.展开更多
Nano-enabled silicone-rubber articles for feeding or chewing could be a source of metallic nanoparticles(NPs)directly exposed to infants and young children.However,the impact of steam disinfection on release of NPs an...Nano-enabled silicone-rubber articles for feeding or chewing could be a source of metallic nanoparticles(NPs)directly exposed to infants and young children.However,the impact of steam disinfection on release of NPs and the related potential risks to children's health are unknown.Here,we investigated contents and form of Ag and Zn in 57 nano-enabled silicone-rubber baby bottle teats,pacifiers,and teethers of seven countries and examined the impacts of steam disinfection on in vitro bioaccessibility(IVBA)of Ag and Zn in the articles.Nearly 89%articles had a mixture of Ag-and Zn-containing NPs and the teethers had relatively high Ag and Zn contents(up to 501 and 254μg/g,respectively).Steam disinfection caused rubber decomposition into micro(nano)plastics(0.54-15.7μm)and NP release from the interior of bulk rubber and micro-sized plastics,thus enhancing the IVBA of Ag and Zn by up to 5.5 times.The findings provide insights into mechanisms for NP release by steam disinfection.Though oral exposure risk assessment suggested low health concerns on individual metal release,our study points out the need to assess the potential health risks of child co-exposure to metallic NPs and micro(nano)plastics.展开更多
The biosynthesis strategy of nanoparticles has attracted much attention due to the mild synthesis condi-tions,environmental-friendly properties,and low costs.Biosynthesized nanoparticles(bio-NPs)not only show excellen...The biosynthesis strategy of nanoparticles has attracted much attention due to the mild synthesis condi-tions,environmental-friendly properties,and low costs.Biosynthesized nanoparticles(bio-NPs)not only show excellent physicochemical properties,but also exhibit high stability,enlarged specific surface area,and excellent biocompatibility,which are crucial for industrial,agricultural,and medical fields.She-wanella,a kind of dissimilatory metal-reducing bacteria,is regarded as a typical biosynthesis-functional bacteria class with wide distribution and strong adaptability.Thus,in this paper,functional bio-NPs by Shewanella were reviewed to provide a comprehensive view of current research progress.The biosynthetic mechanisms of Shewanella are summarized as the Mtr pathway(predominant),extracellular polymeric substance-induced pathway,and enzyme/protein-induced pathway.During the biosynthesis process,bio-logical factors along with the physicochemical parameters highly influenced the properties of the resul-tant bio-NPs.Till now,bio-NPs have been applied in various fields including environmental remediation,antibacterial applications,and microbial fuel cells.However,some challenging issues of bio-NPs by She-wanella remain unsolved,such as optimizing suitable bacterial strains,intelligently controlling bio-NPs,clarifying biosynthesis mechanisms,and expanding bio-NPs applications.展开更多
Characterizing and control the chemical compositions of multi-element particles as single metal nanoparticles(mNPs) on the surfaces of catalytic metal oxide supports is challenging.This can be attributed to the hetero...Characterizing and control the chemical compositions of multi-element particles as single metal nanoparticles(mNPs) on the surfaces of catalytic metal oxide supports is challenging.This can be attributed to the heterogeneity and large size at the nanoscale,the poorly defined catalyst nanostructure,and thermodynamic immiscibility of the strongly repelling metallic elements.To address these challenges,an ultrasonic-assisted coincident electro-oxidation-reduction-precipitation(U-SEO-P) is presented to fabricate ultra-stable PtRuAgCoCuP NPs,which produces numerous active intermediates and induces strong metal-support interactions.To sort the active high-entropy mNPs,individual NPs are described on the support surface and the role of deep learning in understanding/predicting the features of PtRuAgCoCu@TiO_(x) catalysts is explained.Notably,this deep learning approach required minimal to no human input.The as-prepared PtRuAgCoCu@TiO_(x) catalysts can be used to catalyze various important chemical reactions,such as a high reduction conversion(100% in 30 s),with no loss of catalytic activity even after 20 cycles of nitroarene and ketone/aldehyde,which is several times higher than commercial Pt@TiO_(x) owing to individual PtRuAgCoCuP NPs on TiO_(x) surface.In this study,we present the "Totally Defined Catalysis" concept,which has enormous potential for the advancement of high-activity catalysts in the reduction of organic compounds.展开更多
Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existin...Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.展开更多
Nanoparticles with non-spherical shapes are now being widely used for various photonic applications.We observe experimentally that the magnitude as well as the time dependence of the transient absorption of a colloid ...Nanoparticles with non-spherical shapes are now being widely used for various photonic applications.We observe experimentally that the magnitude as well as the time dependence of the transient absorption of a colloid of silver nanoplatelets depends on the relative polarization of the pump and probe pulses.There have been a few reports about the dependence of the transient signal magnitude on polarization,but little information is available on its temporal dependence.Using a theoretical model,we show that this observed behavior arises from the fact that the energy absorption by a non-spherical nanoparticle depends on,among other factors,the nanoparticle orientation with respect to the pump and probe polarization directions.It is essential to consider this when estimating nanoparticle characteristics such as carrier thermalization time,carrier–phonon scattering time,and complex polarizability from transient absorption measurements.展开更多
Background:Glioblastoma multiforme(GBM)is recognized as the most lethal and most highly invasive tumor.The high likelihood of treatment failure arises fromthe presence of the blood-brain barrier(BBB)and stemcells arou...Background:Glioblastoma multiforme(GBM)is recognized as the most lethal and most highly invasive tumor.The high likelihood of treatment failure arises fromthe presence of the blood-brain barrier(BBB)and stemcells around GBM,which avert the entry of chemotherapeutic drugs into the tumormass.Objective:Recently,several researchers have designed novel nanocarrier systems like liposomes,dendrimers,metallic nanoparticles,nanodiamonds,and nanorobot approaches,allowing drugs to infiltrate the BBB more efficiently,opening up innovative avenues to prevail over therapy problems and radiation therapy.Methods:Relevant literature for this manuscript has been collected from a comprehensive and systematic search of databases,for example,PubMed,Science Direct,Google Scholar,and others,using specific keyword combinations,including“glioblastoma,”“brain tumor,”“nanocarriers,”and several others.Conclusion:This review also provides deep insights into recent advancements in nanocarrier-based formulations and technologies for GBM management.Elucidation of various scientific advances in conjunction with encouraging findings concerning the future perspectives and challenges of nanocarriers for effective brain tumor management has also been discussed.展开更多
Optical tweezers have proved to be a powerful tool with a wide range of applications.The gradient force plays a vital role in the stable optical trapping of nano-objects.The scalar method is convenient and effective f...Optical tweezers have proved to be a powerful tool with a wide range of applications.The gradient force plays a vital role in the stable optical trapping of nano-objects.The scalar method is convenient and effective for analyzing the gradient force in traditional optical trapping.However,when the third-order nonlinear effect of the nano-object is stimulated,the scalar method cannot adequately present the optical response of the metal nanoparticle to the external optical field.Here,we propose a theoretical model to interpret the nonlinear gradient force using the vector method.By combining the optical Kerr effect,the polarizability vector of the metallic nanoparticle is derived.A quantitative analysis is obtained for the gradient force as well as for the optical potential well.The vector method yields better agreement with reported experimental observations.We suggest that this method could lead to a deeper understanding of the physics relevant to nonlinear optical trapping and binding phenomena.展开更多
The effect of silver nanostructures prepared by nanosphere lithography on the photoluminescence(PL) properties of blue-emitting In Ga N/Ga N quantum wells(QWs) is studied. Arrays of silver nanoparticles are fabric...The effect of silver nanostructures prepared by nanosphere lithography on the photoluminescence(PL) properties of blue-emitting In Ga N/Ga N quantum wells(QWs) is studied. Arrays of silver nanoparticles are fabricated to yield a collective surface plasmonic resonance(SPR) near to the QWs emission wavelength. A large enhancement in peak PL intensity is observed, when the induced SPR wavelength of the nanoparticles on the QWs sample matches the QWs emission wavelength. The study proves that the SPRs could enhance the light emission efficiency of semiconductor material.展开更多
Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold sal...Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.展开更多
Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanopartic...Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanoparticles@N-doped carbon in situ are prepared using wool keratin as both a novel carbon precursor and a stabilizer.The conducting electrode material is fabricated at 500℃ under customized parameters,which mimics A-B type(two different repeating units) polymeric material and displays excellent deprotonation performance(pH sensitivity).The obtained pH sensor exhibits high pH sensitivity of 57 mV/pH unit and insignificant relative standard deviation of 0.088%.Conversely,the composite carbon material with sp^2 structure prepared at 700℃ is doped with nitrogen and gold nanoparticles,which exhibits good conductivity and electrocatalytic activity for uric acid oxidation.The uric acid sensor has linear response over a range of 1-150 μM and a limit of detection 0.1 μM.These results will provide new avenues where biological material will be the best start,which can be useful to target contradictory applications through molecular engineering at mesoscale.展开更多
Objective This study aims to investigate and compare the toxic effects of four types of metal oxide (ZnO, TiO2, SiO2, and Al2O3) nanoparticles with similar primary size (-20 nm) on human fetal lung fibroblasts (H...Objective This study aims to investigate and compare the toxic effects of four types of metal oxide (ZnO, TiO2, SiO2, and Al2O3) nanoparticles with similar primary size (-20 nm) on human fetal lung fibroblasts (HFL1) in vitro.Methods The HFL1 cells were exposed to the nanoparticles, and toxic effects were analyzed by using MTT assay, cellular morphology observation and Hoechst 33 258 staining.Results The results show that the four types of metal oxide nanoparticles lead to cellular mitochondrial dysfunction, morphological modifications and apoptosis at the concentration range of 0.25-1.50 mg/mL and the toxic effects are obviously displayed in dose-dependent manner. ZnO is the most toxic nanomaterials followed by TiO2, SiO2, and Al2O3 nanoparticles in a descending order.Conclusion The results highlight the differential cytotoxicity associated with exposure to ZnO, TiO2, SiO2, and Al2O3 nanoparticles, and suggest an extreme attention to safety utilization of these nanomaterials.展开更多
Nanomaterials are materials in which at least one of the dimensions of the particles is 100 nm and below.There are many types of nanomaterials,but noble metal nanoparticles are of interest due to their uniquely large ...Nanomaterials are materials in which at least one of the dimensions of the particles is 100 nm and below.There are many types of nanomaterials,but noble metal nanoparticles are of interest due to their uniquely large surface-to-volume ratio,high surface area,optical and electronic properties,high stability,easy synthesis,and tunable surface functionalization.More importantly,noble metal nanoparticles are known to have excellent compatibility with bio-materials,which is why they are widely used in biological applications.The synthesis method of noble metal nanoparticles conventionally involves the reduction of the noble metal salt precursor by toxic reaction agents such as NaBH4,hydrazine,and formaldehyde.This is a major drawback for researchers involved in biological application researches.Hence,the bio-synthesis of noble metal nanoparticles(NPs)by bio-materials via bio-reduction provides an alternative method to synthesize noble metal nanoparticles which are potentially non-toxic and safer for biological application.In this review,the bio-synthesis of noble metal nanoparticle including gold nanoparticle(AuNPs),silver nanoparticle(AgNPs),platinum nanoparticle(PtNPs),and palladium nanoparticle(PdNPs)are first discussed.This is followed by a discussion of these biosynthesized noble metal in biological applications including antimicrobial,wound healing,anticancer drug,and bioimaging.Based on these,it can be concluded that the study on bio-synthesized noble metal nanoparticles will expand further involving bio-reduction by unexplored bio-materials.However,many questions remain on the feasibility of bio-synthesized noble metal nanoparticles to replace existing methods on various biological applications.Nevertheless,the current development of the biological application by bio-synthesized noble metal NPs is still intensively ongoing,and will eventually reach the goal of full commercialization.展开更多
Encapsulating noble metal nanoparticles(NPs)within the zeolite framework enhances the stability and accessibility of active sites;however,direct synthesis remains a challenge because of the easy precipitation of noble...Encapsulating noble metal nanoparticles(NPs)within the zeolite framework enhances the stability and accessibility of active sites;however,direct synthesis remains a challenge because of the easy precipitation of noble metal species under strong alkali crystallization conditions.Herein,beta zeolite-encapsulated Pt NPs(Pt@Beta)were synthesized via a hydrothermal approach involving an unusual acid hydrolysis preaging step.The ligand—(3-mercaptopropyl)trimethoxysilane—and Pt precursor were cohydrolyzed and cocondensed with a silica source in an initially weak acidic environment to prevent colloidal precipitation by enhancing the interaction between the Pt and silica species.Thus,the resultant 0.2%Pt@Beta was highly active in the transformation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid(FDCA)under atmospheric O2 conditions by using water as the solvent while stably evincing a high yield(90%)associated with a large turnover number of 176.The excellent catalysis behavior is attributable to the enhanced stability that inhibits Pt leaching and strengthens the intermediates that accelerate the rate-determining step for the oxidation of 5-formyl-2-furan carboxylic acid into FDCA.展开更多
Several PVP-stabilized colloidal platinum metals nanoparticles have been synthesized and characterized by FTIR and TEM.Comparing with the pure PVP,carbonyl groups of PVP in the mixture of PVP and the metal precursors ...Several PVP-stabilized colloidal platinum metals nanoparticles have been synthesized and characterized by FTIR and TEM.Comparing with the pure PVP,carbonyl groups of PVP in the mixture of PVP and the metal precursors or in the PVP-stabilized metal nanoparticles have obvious peak shifts in FTIR spectra.The peak shifts reveal the interaction between PVP and the metal species.The interaction between PVP and metal precursors has effect on the formation of the colloidal metal nanoparticles.Strength of the intera...展开更多
Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in ch...Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in chemisorption field. A new chemical composite adsorbent is fabricated by adding carbon coated metal(Aluminum and Nickel) nanoparticles with three different addition amounts into the mixture of chloride salts and natural expanded graphite aiming to improve the thermal conductivity. The preparation processes and its thermal conductivity of this novel composite adsorbent are reported and summarized. Experimental results indicate that the nanoparticles are homogenously dispersed in the composite adsorbent by applying the reported preparation processes. The thermal conductivity of the composite adsorbent can averagely enlarge by 20% when the weight ratio of the added nanoparticles is 10 wt%. Moreover, carbon coated aluminum nanoparticles exhibit more effective enlargement in thermal conductivity than nickel nanoparticles. As for the composite adsorbent of CaCl2-NEG, there is a big reinforcement from 30% to 50% for Al@C nanoparticles, however only 10% in maximum caused by Ni@C nanoparticles. The proposed research provides a methodology to design and prepare thermal conductive chemical composite adsorbent.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471105 and 61331007)
文摘In this paper, a modified sub-gridding scheme that hybridizes the conventional finite-difference time-domain(FDTD)method and the unconditionally stable locally one-dimensional(LOD) FDTD is developed for analyzing the periodic metallic nanoparticle arrays. The dispersion of the metal, caused by the evanescent wave propagating along the metal-dielectric interface, is expressed by the Drude model and solved with a generalized auxiliary differential equation(ADE) technique.In the sub-gridding scheme, the ADE–FDTD is applied to the global coarse grids while the ADE–LOD–FDTD is applied to the local fine grids. The time step sizes in the fine-grid region and coarse-grid region can be synchronized, and thus obviating the temporal interpolation of the fields in the time-marching process. Numerical examples about extraordinary optical transmission through the periodic metallic nanoparticle array are provided to show the accuracy and efficiency of the proposed method.
基金partially supported by the National Basic Research Program of China(No.2012CB932702)the National Natural Science Foundation of China(Nos.51071022,51271020,and 11174031)+3 种基金the Program for Changjiang Scholars and Innovative Research Teams in University(PCSIRT)Beijing Nova Program(No.2011031)the Fundamental Research Funds for the Central Universitiesthe State Key Laboratory of Advanced Metals and Materials(No.2011-Z03)
文摘Monodisperse Fe-based and Co-based nanopar-ticles exhibit unique magnetic properties. They play important roles in magnetic storage and biomedical application. Their chemical synthesis and performance enhancement draw a lot of study interest. Investigations of magnetic metallic nano-particles are very active in many scientific fields. This paper reviews the present advances in chemical synthesis, perfor-mance enhancement, and potential applications of monodis-perse Fe-based and Co-based nanoparticles.
基金supported by the L’Oréal-UNESCO for women in Science Programmethe National Research Foundation(129651)of South Africa。
文摘Nanofertilizers increase efficiency and sustainability of agricultural crop production.Due to their nanosize properties,they have been shown to increase productivity through target delivery or slow release of nutrients,thereby limiting the rate of fertilizer application required.Nanofertilizers can be synthesized via different approaches ranging from physical and chemical to green(biological)synthesis.The green approach is preferable because it makes use of less chemicals,thereby producing less chemical contamination and it is safer in comparison to physicochemical approaches.Hence,discussion on the use of green synthesized nanoparticles as nanofertilizers is pertinent for a sustainable approach in agriculture.This review discusses recent developments and applications of biologically synthesized metallic nanoparticles that can also be used as nanofertilizers,as well as their uptake mechanisms for plant growth.Toxicity concerns of nanoparticle applications in agriculture are also discussed.
基金Supported by King Saud University,College of Science-Research Center,Project Number PHYS/2009/19
文摘Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms, respectively. The total interaction energy function for any rnetallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terrns are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.
基金supported by the Key-Area Research and Development Program of Guangdong Province (No.2020B1111380003)the National Natural Science Foundation of China (Nos.42177377 and 31861133003)。
文摘Nano-enabled silicone-rubber articles for feeding or chewing could be a source of metallic nanoparticles(NPs)directly exposed to infants and young children.However,the impact of steam disinfection on release of NPs and the related potential risks to children's health are unknown.Here,we investigated contents and form of Ag and Zn in 57 nano-enabled silicone-rubber baby bottle teats,pacifiers,and teethers of seven countries and examined the impacts of steam disinfection on in vitro bioaccessibility(IVBA)of Ag and Zn in the articles.Nearly 89%articles had a mixture of Ag-and Zn-containing NPs and the teethers had relatively high Ag and Zn contents(up to 501 and 254μg/g,respectively).Steam disinfection caused rubber decomposition into micro(nano)plastics(0.54-15.7μm)and NP release from the interior of bulk rubber and micro-sized plastics,thus enhancing the IVBA of Ag and Zn by up to 5.5 times.The findings provide insights into mechanisms for NP release by steam disinfection.Though oral exposure risk assessment suggested low health concerns on individual metal release,our study points out the need to assess the potential health risks of child co-exposure to metallic NPs and micro(nano)plastics.
基金supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(no.2021CXLH0005)the National Key Research and Development Pro-gram of China(no.2022YFC3106004)+5 种基金Shandong Provincial Natu-ral Science Foundation of China(no.ZR2022MD023)the Young Elite Scientists Sponsorship Program by CAST(no.YESS20210201)Wenhai Program of the S&T Fund of Shandong Province for Pi-lot National Laboratory for Marine Science and Technology(Qing-dao)(no.2021WHZZB2303)the Basic Scientific Fund for Na-tional Public Research Institutes of China(nos.2019Y03 and 2020S02)Hainan Province Science and Technology Special Fund(no.ZDYF2021GXJS210)National Natural Science Foundation of China(no.41706080).
文摘The biosynthesis strategy of nanoparticles has attracted much attention due to the mild synthesis condi-tions,environmental-friendly properties,and low costs.Biosynthesized nanoparticles(bio-NPs)not only show excellent physicochemical properties,but also exhibit high stability,enlarged specific surface area,and excellent biocompatibility,which are crucial for industrial,agricultural,and medical fields.She-wanella,a kind of dissimilatory metal-reducing bacteria,is regarded as a typical biosynthesis-functional bacteria class with wide distribution and strong adaptability.Thus,in this paper,functional bio-NPs by Shewanella were reviewed to provide a comprehensive view of current research progress.The biosynthetic mechanisms of Shewanella are summarized as the Mtr pathway(predominant),extracellular polymeric substance-induced pathway,and enzyme/protein-induced pathway.During the biosynthesis process,bio-logical factors along with the physicochemical parameters highly influenced the properties of the resul-tant bio-NPs.Till now,bio-NPs have been applied in various fields including environmental remediation,antibacterial applications,and microbial fuel cells.However,some challenging issues of bio-NPs by She-wanella remain unsolved,such as optimizing suitable bacterial strains,intelligently controlling bio-NPs,clarifying biosynthesis mechanisms,and expanding bio-NPs applications.
基金National Research Foundation (NRF) of South Korea (NRF-2022R1A2C1004392)Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (IRIS RS-202300240109)。
文摘Characterizing and control the chemical compositions of multi-element particles as single metal nanoparticles(mNPs) on the surfaces of catalytic metal oxide supports is challenging.This can be attributed to the heterogeneity and large size at the nanoscale,the poorly defined catalyst nanostructure,and thermodynamic immiscibility of the strongly repelling metallic elements.To address these challenges,an ultrasonic-assisted coincident electro-oxidation-reduction-precipitation(U-SEO-P) is presented to fabricate ultra-stable PtRuAgCoCuP NPs,which produces numerous active intermediates and induces strong metal-support interactions.To sort the active high-entropy mNPs,individual NPs are described on the support surface and the role of deep learning in understanding/predicting the features of PtRuAgCoCu@TiO_(x) catalysts is explained.Notably,this deep learning approach required minimal to no human input.The as-prepared PtRuAgCoCu@TiO_(x) catalysts can be used to catalyze various important chemical reactions,such as a high reduction conversion(100% in 30 s),with no loss of catalytic activity even after 20 cycles of nitroarene and ketone/aldehyde,which is several times higher than commercial Pt@TiO_(x) owing to individual PtRuAgCoCuP NPs on TiO_(x) surface.In this study,we present the "Totally Defined Catalysis" concept,which has enormous potential for the advancement of high-activity catalysts in the reduction of organic compounds.
基金supported by the National Natural Science Foundation of China(21902097,21636006 and 21761132025)the China Postdoctoral Science Foundation(2019M653861XB)+1 种基金the Natural Science Foundation of Shaanxi Province(2020JQ-409)the Fundamental Research Funds for the Central Universities(GK201901001 and GK202003035)。
文摘Oxidative dehydrogenation of propane with carbon dioxide(CO_(2)-ODP)characterizes the tandem dehydrogenation of propane to propylene with the reduction of the greenhouse gas of CO_(2)to valuable CO.However,the existing catalyst is limited due to the poor activity and stability,which hinders its industrialization.Herein,we design the finned Zn-MFI zeolite encapsulated noble metal nanoparticles(NPs)as bifunctional catalysts(NPs@Zn-MFI)for CO_(2)-ODP.Characterization results reveal that the Zn2+species are coordinated with the MFI zeolite matrix as isolated cations and the NPs of Pt,Rh,or Rh Pt are highly dispersed in the zeolite crystals.The isolated Zn2+cations are very effective for activating the propane and the small NPs are favorable for activating the CO_(2),which synergistically promote the selective transformation of propane and CO_(2)to propylene and CO.As a result,the optimal 0.25%Rh0.50%Pt@Zn-MFI catalyst shows the best propylene yield,satisfactory CO_(2)conversion,and long-term stability.Moreover,considering the tunable synergetic effects between the isolated cations and NPs,the developed approach offers a general guideline to design more efficient CO_(2)-ODP catalysts,which is validated by the improved performance of the bifunctional catalysts via simply substituting Sn4+cations for Zn2+cations in the MFI zeolite matrix.
文摘Nanoparticles with non-spherical shapes are now being widely used for various photonic applications.We observe experimentally that the magnitude as well as the time dependence of the transient absorption of a colloid of silver nanoplatelets depends on the relative polarization of the pump and probe pulses.There have been a few reports about the dependence of the transient signal magnitude on polarization,but little information is available on its temporal dependence.Using a theoretical model,we show that this observed behavior arises from the fact that the energy absorption by a non-spherical nanoparticle depends on,among other factors,the nanoparticle orientation with respect to the pump and probe polarization directions.It is essential to consider this when estimating nanoparticle characteristics such as carrier thermalization time,carrier–phonon scattering time,and complex polarizability from transient absorption measurements.
文摘Background:Glioblastoma multiforme(GBM)is recognized as the most lethal and most highly invasive tumor.The high likelihood of treatment failure arises fromthe presence of the blood-brain barrier(BBB)and stemcells around GBM,which avert the entry of chemotherapeutic drugs into the tumormass.Objective:Recently,several researchers have designed novel nanocarrier systems like liposomes,dendrimers,metallic nanoparticles,nanodiamonds,and nanorobot approaches,allowing drugs to infiltrate the BBB more efficiently,opening up innovative avenues to prevail over therapy problems and radiation therapy.Methods:Relevant literature for this manuscript has been collected from a comprehensive and systematic search of databases,for example,PubMed,Science Direct,Google Scholar,and others,using specific keyword combinations,including“glioblastoma,”“brain tumor,”“nanocarriers,”and several others.Conclusion:This review also provides deep insights into recent advancements in nanocarrier-based formulations and technologies for GBM management.Elucidation of various scientific advances in conjunction with encouraging findings concerning the future perspectives and challenges of nanocarriers for effective brain tumor management has also been discussed.
基金supported by the Key Research Project of Zhejiang Lab(No.2022MG0AC05)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)+3 种基金the National Natural Science Foundation of China(Nos.61975128,61935013,and 62175157)the Shenzhen Science and Technology Program(Nos.JCYJ20210324120403011 and RCJC20210609103232046)the Natural Science Foundation of Guangdong Province(No.2019TQ05X750)the Shenzhen Peacock Plan(No.KQTD20170330110444030)。
文摘Optical tweezers have proved to be a powerful tool with a wide range of applications.The gradient force plays a vital role in the stable optical trapping of nano-objects.The scalar method is convenient and effective for analyzing the gradient force in traditional optical trapping.However,when the third-order nonlinear effect of the nano-object is stimulated,the scalar method cannot adequately present the optical response of the metal nanoparticle to the external optical field.Here,we propose a theoretical model to interpret the nonlinear gradient force using the vector method.By combining the optical Kerr effect,the polarizability vector of the metallic nanoparticle is derived.A quantitative analysis is obtained for the gradient force as well as for the optical potential well.The vector method yields better agreement with reported experimental observations.We suggest that this method could lead to a deeper understanding of the physics relevant to nonlinear optical trapping and binding phenomena.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774195,U0834001,10974263,11174374,11174061,and 10725420)the Key Program of Ministry of Education,China(Grant No.309024)+1 种基金the New Century Excellent Talents in University,the National Basic Research Program of China(Grant No.2010CB923200)the Natural Science Foundation of Guangdong Province,China(Grant No.S2013010015795)
文摘The effect of silver nanostructures prepared by nanosphere lithography on the photoluminescence(PL) properties of blue-emitting In Ga N/Ga N quantum wells(QWs) is studied. Arrays of silver nanoparticles are fabricated to yield a collective surface plasmonic resonance(SPR) near to the QWs emission wavelength. A large enhancement in peak PL intensity is observed, when the induced SPR wavelength of the nanoparticles on the QWs sample matches the QWs emission wavelength. The study proves that the SPRs could enhance the light emission efficiency of semiconductor material.
基金supported by the Project from Institute of Chemical and Engineering Sciences (ICES), Singapore (ICES/15-1G4B01)~~
文摘Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.51502253,U1405226,21503175,51773171,and 21705135)Natural Science Foundation of Guangdong Province(Grant No.2016A030310369)+5 种基金Natural Science Foundation of Fujian Province(Grant No.2017J01104)the Fundamental Research Funds for the Central Universities of China(Grant Nos.20720160127 and 20720180013)Doctoral Fund of the Ministry of Education(Grant No.20130121110018)NUS Ac RF Tier 1(Grant No.R-144-000-367-112)the “111” Project(Grant No.B16029)the 1000 Talents Program funding from the Xiamen University。
文摘Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanoparticles@N-doped carbon in situ are prepared using wool keratin as both a novel carbon precursor and a stabilizer.The conducting electrode material is fabricated at 500℃ under customized parameters,which mimics A-B type(two different repeating units) polymeric material and displays excellent deprotonation performance(pH sensitivity).The obtained pH sensor exhibits high pH sensitivity of 57 mV/pH unit and insignificant relative standard deviation of 0.088%.Conversely,the composite carbon material with sp^2 structure prepared at 700℃ is doped with nitrogen and gold nanoparticles,which exhibits good conductivity and electrocatalytic activity for uric acid oxidation.The uric acid sensor has linear response over a range of 1-150 μM and a limit of detection 0.1 μM.These results will provide new avenues where biological material will be the best start,which can be useful to target contradictory applications through molecular engineering at mesoscale.
基金supported by grants from the National Basic Research Program of China (2011CB933404)the Science Foundation of Jiangsu Key Laboratory for Biomaterials and Devices (2010LBMD05)the Science Foundation of Southeast University (XJ2008335)
文摘Objective This study aims to investigate and compare the toxic effects of four types of metal oxide (ZnO, TiO2, SiO2, and Al2O3) nanoparticles with similar primary size (-20 nm) on human fetal lung fibroblasts (HFL1) in vitro.Methods The HFL1 cells were exposed to the nanoparticles, and toxic effects were analyzed by using MTT assay, cellular morphology observation and Hoechst 33 258 staining.Results The results show that the four types of metal oxide nanoparticles lead to cellular mitochondrial dysfunction, morphological modifications and apoptosis at the concentration range of 0.25-1.50 mg/mL and the toxic effects are obviously displayed in dose-dependent manner. ZnO is the most toxic nanomaterials followed by TiO2, SiO2, and Al2O3 nanoparticles in a descending order.Conclusion The results highlight the differential cytotoxicity associated with exposure to ZnO, TiO2, SiO2, and Al2O3 nanoparticles, and suggest an extreme attention to safety utilization of these nanomaterials.
基金This work was financially supported by the National Natural Science Foundation of China(No.21536010).
文摘Nanomaterials are materials in which at least one of the dimensions of the particles is 100 nm and below.There are many types of nanomaterials,but noble metal nanoparticles are of interest due to their uniquely large surface-to-volume ratio,high surface area,optical and electronic properties,high stability,easy synthesis,and tunable surface functionalization.More importantly,noble metal nanoparticles are known to have excellent compatibility with bio-materials,which is why they are widely used in biological applications.The synthesis method of noble metal nanoparticles conventionally involves the reduction of the noble metal salt precursor by toxic reaction agents such as NaBH4,hydrazine,and formaldehyde.This is a major drawback for researchers involved in biological application researches.Hence,the bio-synthesis of noble metal nanoparticles(NPs)by bio-materials via bio-reduction provides an alternative method to synthesize noble metal nanoparticles which are potentially non-toxic and safer for biological application.In this review,the bio-synthesis of noble metal nanoparticle including gold nanoparticle(AuNPs),silver nanoparticle(AgNPs),platinum nanoparticle(PtNPs),and palladium nanoparticle(PdNPs)are first discussed.This is followed by a discussion of these biosynthesized noble metal in biological applications including antimicrobial,wound healing,anticancer drug,and bioimaging.Based on these,it can be concluded that the study on bio-synthesized noble metal nanoparticles will expand further involving bio-reduction by unexplored bio-materials.However,many questions remain on the feasibility of bio-synthesized noble metal nanoparticles to replace existing methods on various biological applications.Nevertheless,the current development of the biological application by bio-synthesized noble metal NPs is still intensively ongoing,and will eventually reach the goal of full commercialization.
文摘Encapsulating noble metal nanoparticles(NPs)within the zeolite framework enhances the stability and accessibility of active sites;however,direct synthesis remains a challenge because of the easy precipitation of noble metal species under strong alkali crystallization conditions.Herein,beta zeolite-encapsulated Pt NPs(Pt@Beta)were synthesized via a hydrothermal approach involving an unusual acid hydrolysis preaging step.The ligand—(3-mercaptopropyl)trimethoxysilane—and Pt precursor were cohydrolyzed and cocondensed with a silica source in an initially weak acidic environment to prevent colloidal precipitation by enhancing the interaction between the Pt and silica species.Thus,the resultant 0.2%Pt@Beta was highly active in the transformation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid(FDCA)under atmospheric O2 conditions by using water as the solvent while stably evincing a high yield(90%)associated with a large turnover number of 176.The excellent catalysis behavior is attributable to the enhanced stability that inhibits Pt leaching and strengthens the intermediates that accelerate the rate-determining step for the oxidation of 5-formyl-2-furan carboxylic acid into FDCA.
基金This work was financially supported by the SRF for ROCS,SEM.(No. LX2005-03)Sponsored by CNPC Innovation Fund(No.05E7002).
文摘Several PVP-stabilized colloidal platinum metals nanoparticles have been synthesized and characterized by FTIR and TEM.Comparing with the pure PVP,carbonyl groups of PVP in the mixture of PVP and the metal precursors or in the PVP-stabilized metal nanoparticles have obvious peak shifts in FTIR spectra.The peak shifts reveal the interaction between PVP and the metal species.The interaction between PVP and metal precursors has effect on the formation of the colloidal metal nanoparticles.Strength of the intera...
基金Supported by National Natural Science Foundation of China(No.51276044)Science and Technology Planning Project of Guangdong Province,China(Grant Nos.2015A050502047,2015B010135011)+3 种基金Science and Technology Planning Project of Guangzhou City,China(Grant Nos.201508030018,2016201604030040)Youth Foundation of Guangdong University of Technology,China(Grant No.252151038)EPSRC Grants(Grant Nos.EP/I027904/1,EP/K004689/1,EP/M008088/1)IChemE Global Awards 2015:MCSA for FP&VA
文摘Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in chemisorption field. A new chemical composite adsorbent is fabricated by adding carbon coated metal(Aluminum and Nickel) nanoparticles with three different addition amounts into the mixture of chloride salts and natural expanded graphite aiming to improve the thermal conductivity. The preparation processes and its thermal conductivity of this novel composite adsorbent are reported and summarized. Experimental results indicate that the nanoparticles are homogenously dispersed in the composite adsorbent by applying the reported preparation processes. The thermal conductivity of the composite adsorbent can averagely enlarge by 20% when the weight ratio of the added nanoparticles is 10 wt%. Moreover, carbon coated aluminum nanoparticles exhibit more effective enlargement in thermal conductivity than nickel nanoparticles. As for the composite adsorbent of CaCl2-NEG, there is a big reinforcement from 30% to 50% for Al@C nanoparticles, however only 10% in maximum caused by Ni@C nanoparticles. The proposed research provides a methodology to design and prepare thermal conductive chemical composite adsorbent.