期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Geochronology,Geochemistry and Petrogenesis of the Bangbule Quartz Porphyry:Implications for Metallogenesis 被引量:1
1
作者 HE Chuankai WANG Yong +5 位作者 WANG Haiyong TANG Juxing YAN Penggang WANG Yongqiang FU Xuelian FENG Yipeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期744-758,共15页
The Bangbule skarn lead-zinc(Pb-Zn)deposit(>1 Mt Zn+Pb)is located in the western Nyainqentanglha polymetallic metallogenetic belt,central Tibet.Lenticular orebodies are all hosted in skarn and developed in the cont... The Bangbule skarn lead-zinc(Pb-Zn)deposit(>1 Mt Zn+Pb)is located in the western Nyainqentanglha polymetallic metallogenetic belt,central Tibet.Lenticular orebodies are all hosted in skarn and developed in the contact zone between the quartz porphyry and carbonate strata of the mid Paleozoic Middle to Upper Chaguoluoma Formation as well as in carbonate and sandstone beds of the Upper Paleozoic Laga Formation.As a newly discovered skarn deposit,the geological background and metallogenesis of this deposit remain poorly understood.Detailed petrological,geochemical and geochronological data of the ore-related quartz porphyry,helps constrain the mineralization age and contributes to discussion on the ore genesis of the Bangbule deposit.Both endoskarn and exoskarn are identified in the Bangbule deposit.From quartz porphyry to carbonate formation,the exoskarn is zoned from proximal garnet skarn to distal pyroxene skarn.Zircon U-Pb dating results show that the quartz porphyry formed at 73.9±0.8 Ma.Geochemical analysis results show that the quartz porphyry has high contents of SiO_(2)(71.40–74.94 wt%)and K_(2)O+Na_(2)O(3.76–8.46 wt%)with A/CNK values of 0.69 to 1.06.Besides,the quartz porphyry is enriched in large ion lithophile elements(LILEs)and light rare earth elements(LREEs)and have lowεNd(t)(from-8.25 to-8.19)and high initial(^(87)Sr/^(86)Sr)i values(0.713611–0.714478).Major,trace elements and whole-rock F concentration analysis results from the endoskarn samples show higher TFe_(2)O_(3),MgO,CaO,Pb+Zn,W,Sn,Mo and F etc.,and lower alkalis(K_(2)O,Na_(2)O,Sr and Ba)than those of fresh quartz porphyry,indicating that the early ore-forming fluids were an Ca-Fe-F-enriched fluid.Massive ore in the proximal skarn might be related to the high F content in the magma,which lowered the solidus temperature of the quartz porphyry magma and caused a lower temperature of the ore-forming fluids,as well as facilitating the precipitation of sphalerite and galena.Based on the geochemical characteristics presented in this study,we propose that the ore-related quartz porphyry was formed by partial melting of crust materials with some juvenile crustal component input.The partial melting of the middle-upper crust after the initial enrichment of lead and zinc elements are important for the formation of Pb-Zn deposits.The case study of the Bangbule deposit has proven that there is still a crust-derived magmatic source region in the western segment of the central Lhasa terrane.Therefore,there is still great potential for Pb-Zn mineralization and Pb-Zn exploration. 展开更多
关键词 PETROGENESIS quartz porphyry metallogenesis Bangbule skarn deposit TIBET
下载PDF
Metallogenesis related to Mesozoic Granitoids in the Nanling Range, South China and Their Geodynamic Settings 被引量:26
2
作者 HUA Renmin CHEN Peirong ZHANG Wenlan YAO Junming LIN Jinfu ZHANG Zhanshi GU Shengyan LIU Xiaodong QI Huawen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第6期810-820,共11页
Affected by the compressive stress from the South-Central (Indo-China) Peninsula, the Indosinian orogenesis, characterized by collision, thrust and uplifting, took place inside the South China Plate during 250-230 M... Affected by the compressive stress from the South-Central (Indo-China) Peninsula, the Indosinian orogenesis, characterized by collision, thrust and uplifting, took place inside the South China Plate during 250-230 Ma. The ages of the Indosinian granitoids in the Nanling Range and vicinity areas are mostly 240-205 Ma, indicating that they were emplaced in both late collision and post-collision geodynamic environments. No important granite-related metallogenesis occurred in this duration. A post-orogenic setting started at the beginning of the Yanshanian Period, which controlled large-scale granitic magmatism and related metallogenesis. This paper makes the first attempt to divide the Yanshanian Period into three sub-periods, i.e. the early, middle and late Yanshanian Periods, based mainly on the features of magmatism, especially granitoids and related metallogenesis and their geodynamic environments. The magmatic association of the Early Yanshanian (about 185-170 Ma) comprises four categories of magmatism, i.e. basalt, bimodal volcanics, A-type granite and intraplate high-K calc-alkaline (HKCA) magmatism, which indicates an extension-thinning of lithosphere and upwelling of mantle material to a relative small and local extent. Pb-Zn, Cu and Au mineralizations associated with HKCA magmatism represents the first high tide of Mesozoic metallogenesis in the Nanling Range area. During the middle Yanshanian, the lithosphere was subjected to more extensive and intensive extending and thinning, and hence mantle upwelling and basaltic magma underplating caused a great amount of crust remelting granitoids. This period can be further divided into two stages. The first stage (170-150 Ma) is represented by large-scale emplacement of crust remelting granites with local tungsten mineralization at its end. The second stage (150-140 Ma) is the most important time of large-scale mineralizations of non-ferrous and rare metals, e.g. W, Sn, Nb-Ta, Bi, Mo, Be, in the Nanling Range area. The late Yanshanian (140-65 Ma) was generally characterized by full extension and breakup of the lithosphere of South China. However, owing to the influence of the Pacific Plate movement, the eastern part of South China was predominated by subduction-related compression, which resulted in magmatism of calc-alkaline and shoshonite series and related metallogeneses of Au, Ag, Pb-Zn, Cu and (Mo, Sn), followed by extension in its late stage. In the Nanling Range area, the late Yanshanian magmatism was represented by granitic volcanic-intrusive complexes and mafic dikes, which are genetically related to volcanic-type uranium and porphyry tin deposits, and the mobilization-mineralization of uranium from pre-existing Indosinian granites. 展开更多
关键词 metallogenesis GRANITOIDS geodynamic setting Yanshanian Period Nanling Range
下载PDF
Cascaded Evolution of Mantle Plumes and Metallogenesis of Core- and Mantle-derived Elements 被引量:18
3
作者 NIUShuyin HOUQuanli +4 位作者 HOUZengqian SUNAiqu WANGBaode LIHongyang XUChuanshi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第4期522-536,共15页
Mineral deposits are unevenly distributed in the Earth's crust, which is closely related to the formation and evolution of the Earth. In the early history of the Earth, controlled by the gravitational contraction ... Mineral deposits are unevenly distributed in the Earth's crust, which is closely related to the formation and evolution of the Earth. In the early history of the Earth, controlled by the gravitational contraction and thermal expansion, lighter elements, such as radioactive, halogen-family, rare and rare earth elements and alkali metals, migrated upwards; whereas heavier elements, such as iron-family and platinum-family elements, base metals and noble metals, had a tendency of sinking to the Earth's core, so that the elements iron, nickel, gold and silver are mainly concentrated in the Earth's core. However, during the formation of the stratified structure of the Earth, the existence of temperature, pressure and viscosity differences inside and outside the Earth resulted in vertical material movement manifested mainly by cascaded evolution of mantle plumes in the Earth. The stratifications and vertical movement of the Earth were interdependent and constituted the motive force of the mantle-core movement. The cascaded evolution of mantle plumes opens the passageways for the migration of deep-seated ore-forming material, and thus elements such as gold and silver concentrated in the core and on the core-mantle boundary migrate as the gaseous state together with the hot material flow of mantle plumes against the gravitational force through the passageways to the lithosphere, then migrate as the mixed gas-liquid state to the near-surface level and finally are concentrated in favorable structural expansion zones, forming mineral deposits. This is possibly the important metallogenic mechanism for gold, silver, lead, zinc, copper and other many elements. Take for example the NE-plunging crown of the Fuping mantle-branch structure, the paper analyzes ductile-brittle shear zone-type gold fields (Weijiayu) at the core of the magmatic-metamorphic complex, principal detachment-type gold fields (Shangmingyu) and hanging-wall cover fissure-vein-type lead-zinc polymetallic ore fields (Lianbaling) and further briefly analyzes the source of ore-forming material and constructs an ore-forming and -controlling model. 展开更多
关键词 mantle plume mantle-branch structure antigravitational migration metallogenesis Taihang Mountains
下载PDF
Major Advances in the Study of the Precambrian Geology and Metallogenesis of the North China Craton:A Review 被引量:10
4
作者 ZHAO Lei ZHU Xiyan ZHAI Mingguo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1122-1155,共34页
The North China Craton (NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those ... The North China Craton (NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those of other cratons, the NCC also exhibits some unique features such as multi- stage cratonization (late Archaean and Palaeoproterozoic) and long-term rifting during the Meso- Neoproterozoic. The NCC thus provides one of the best examples to address secular changes in geological history and metallogenic epochs in the evolving Earth. We summarize the major geological events and metallogenic systems of the NCC, so that the evolutionary patterns of the NCC can provide a better understanding of the Precambrian NCC and facilitate comparison of the NCC with other ancient continental blocks globally. The NCC experienced three major tectonic cycles during the Precambrian: (1) Neoarchaean crustal growth and stabilization; (2) Palaeoproterozoic rifting-subduction-accretion-collision with imprints of the Great Oxidation Event and (3) Meso-Neoproterozoic multi-stage rifting. A transition from primitive- to modern-style plate tectonics occurred during the early Precambrian to late Proterozoic and is evidenced by the major geological events. Accompanying these major geological events, three major metallogenic systems are identified: (1) the Archaean banded iron formation system; (2) Palaeoproterozoic Cu-Pb-Zn and Mg-B systems and (3) a Mesoproterozoic rare earth element-Fe- Pb-Zn system. The ore-deposit types in each of these metallogenic systems show distinct characteristics and tectonic affinities. 展开更多
关键词 North China Craton geological events metallogenesis CRATONIZATION multi-stage rifting
下载PDF
Fluid Geochemistry and Metallogenesis of the Hatu Gold Deposit in the Junggar Basin, Xinjiang 被引量:7
5
作者 WANGLijuan WANGJingbin +2 位作者 WANGYuwang ZHUHeping QULili 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期387-391,共5页
The Hatu large gold deposit is located on the western margin of the Junggar basin, Xinjiang. Its mineralization is characterized by auriferous quartz veins and Au-bearing altered fracturing zones. Studies on mineralog... The Hatu large gold deposit is located on the western margin of the Junggar basin, Xinjiang. Its mineralization is characterized by auriferous quartz veins and Au-bearing altered fracturing zones. Studies on mineralogy, inclusions and decrepitation temperature indicate that the gold deposit was formed by overlapping of two kinds of fluid of different origins, instead of gradual evolution of a single fluid. The auriferous quartz veins are related to magmatism-originated fluid, but the Au-bearing altered fracturing zones to deep-derived fluid. Bonanzas in quartz veins were formed and localized at overlapping positions of two types of fluid under intensive compression. 展开更多
关键词 Hatu gold deposit ore-forming fluid REE of inclusions metallogenesis XINJIANG
下载PDF
Qinling Orogenic Belt:Its Palaeozoic-Mesozoic Evolution and Metallogenesis 被引量:2
6
作者 SHAO Shicai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期452-457,共6页
The formation, development and evolution of the Qinling orogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean-Palaeoproterozoic (3.0–1.6 Ga), (2) p... The formation, development and evolution of the Qinling orogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean-Palaeoproterozoic (3.0–1.6 Ga), (2) plate evolution (0.8–0.2 Ga), and (3) intracontinental orogeny and tectonic evolution in the Mesozoic. 展开更多
关键词 Qinling orogenic belt EVOLUTION metallogenesis
下载PDF
TECTONIC SETTING AND METALLOGENESIS OF THE PRINCIPAL SECTORS OF THE TETHYAN EURASIAN METALLOGENIC BELT 被引量:4
7
作者 Slobodan Jankovic (Dept. of Mineral Exploration, Faculty of Mining and Geology, Djusina 7, 11000 Belgrade, Yogoslavia) 《Geotectonica et Metallogenia》 2001年第1期14-36,共23页
Three global metallogenic belts were formed in the world during Mesozoic and post Mesozoic times. Two of them are situated along the western and eastern Pacific margins, and the third one——the Tethyan Eurasian metal... Three global metallogenic belts were formed in the world during Mesozoic and post Mesozoic times. Two of them are situated along the western and eastern Pacific margins, and the third one——the Tethyan Eurasian metallogenic belt (TEMB) is related to the domain of Eurasian plate and flanked on the south by the Afro Arabian and Indian plates.The general tectonic evolution of the realm where the TEMB was formed is closely connected with the history of Tethys. The emplacement of ore deposits and the development of regional metallogenic units are related to a definitive time interval and to specific tectonic settings such as: (1) Intracontinental rifting along the northern margin of Gondwana and/or fragments already separated; (2) Oceanic environments (i.e. ophiolite complexes and ocean floor sediments) host podiform chromite deposits, volcano sedimentary cupriferous pyrite deposits (Cyprus type), stratiform manganese deposits, and sporadically PGE deposits; (3) Subduction related settings involve mainly porphyry copper deposits, hydrothermal massive sulphide polymetallic deposits, and epithermal deposits. So far identified mineralization of porphyry copper exceeds in the TEMB over 100 million tons of copper metal; and (4) Collision and post collision continent continent setting includes deposits of lead zinc, antimony, gold, in some sectors tin deposits, as well. The giant deposits of Li pegmatite occur sporadically. The TEMB is almost a continuously mineralized belt, but within it, some sectors display specific features of tectonic settings, association of elements, minerals and morphogenetic types of mineralization. 展开更多
关键词 TECTONIC setting TETHYAN Eurasian METALLOGENIC belt metallogenesis
下载PDF
Geochronology and geochemistry of magmatic rocks in the Dongzi–Changhanboluo Pb–Zn ore district in Chifeng,Inner Mongolia,and their relationship with metallogenesis
8
作者 Hongjing Xie Yuwang Wang +2 位作者 Yunguo Zhang Wei Jiang Zhiyuan Sun 《Acta Geochimica》 EI CAS CSCD 2020年第5期668-697,共30页
Bulk-rock elements,isotopes,and zircon U–Pb ages are reported for magmatic rocks in the Dongzi–Changhanboluo Pb–Zn ore district in Chifeng,Inner Mongolia,China.Zircon U–Pb dating identified four stages of magmatis... Bulk-rock elements,isotopes,and zircon U–Pb ages are reported for magmatic rocks in the Dongzi–Changhanboluo Pb–Zn ore district in Chifeng,Inner Mongolia,China.Zircon U–Pb dating identified four stages of magmatism:Late Silurian gabbroic diorite(*420 Ma),Middle Permian monzonite(*274 Ma),Late Jurassic quartz porphyry and ignimbrite,breccia tuff(153–158 Ma)and Early Cretaceous andesitic porphyrite(*127 Ma).Integrating field observations,geochronology,and element and isotope geochemistry indicated a complex petrogenetic history of the magmatic rocks.The gabbroic diorite may have been sourced from EM1-type mantle.The source of the monzonite may have been mantle metasomatized by melt from the subducting plate.The Jurassic volcaniclastic rocks formed in a medium-pressure,high-temperature environment,possibly in the background of crustal thickening in a syncollisional stage and an early postcollisional stage.During this process,shaly sedimentary rocks were brought into the deep crust and heated,followed by the rapid isostatic uplift of the crust,which caused partial melting of the sedimentary rocks.Quartz monzonite porphyry and quartz porphyry formed by partial melting of mantle metasomatized by subducted sediments,but the quartz porphyry experienced high-degree differentiation and evolution.The andesitic porphyrite has characteristics similar to those of Permian monzonite,indicating that its source area was also the zone of mantle metasomatized by subducted sediment.The late Silurian and Permian magmatic rocks in this area most likely formed against a continental arc background related to the subduction of the Paleo-Asian Ocean Plate beneath the North China Plate.The Late Jurassic magmatic rocks suggest that the northern margin of the North China Craton may have been in a postcollisional setting during the Late Jurassic,with no obvious crustal thinning.The Cretaceous andesitic porphyrite may have formed against the background of lithospheric extension and thinning.According to the comprehensive analysis of geological characteristics,diagenetic and metallogenic epochs,and Pb isotope data,the formation of ore bodies in the Dongzi–Changhanboluo ore district was closely related to the Jurassic quartz porphyry. 展开更多
关键词 Pb–Zn ore district Chifeng Zircon U–Pb dating Sr–Nd–Pb isotope Relationship with metallogenesis
下载PDF
Classification,metallogenesis and exploration of silver deposits in Daxing’anling of Inner Mongolia and its adjacent areas
9
作者 Biao Jiang Deng-hong Wang +12 位作者 Yu-chuan Chen Tong Zhang Xiu-lang Pu Wen-wen Ma Yan Wang Guang Wu Li-wen Wu Tong Zhang Xue-jiao Li Jie Yan Yu-shan Zuo Hong-jun Sun Zhi-yuan Li 《China Geology》 CAS 2022年第4期595-613,共19页
By the end of 2020,83 silver deposits(or ore occurrences),including four super-large-scale deposits,nine large-scale deposits,33 medium-scale deposits and 37 small-scale deposits or ore occurrences,have been proved.Th... By the end of 2020,83 silver deposits(or ore occurrences),including four super-large-scale deposits,nine large-scale deposits,33 medium-scale deposits and 37 small-scale deposits or ore occurrences,have been proved.The amount of silver metal exceeds 86000 t with average grade of 100 g/t,which makes Daxing’anling region one of the the most important silver ore belt in China.However,the metallogenic characteristics and metallogenesis need to be clarified.The silver deposits in the study area are classified into three main types,which are magmatic hydrothermal vein type,continental volcano-subvolcanic type and skarn type,respectively.The supergiant deposits include the Shuangjianzishan deposit(silver metal amount of 15214 t with average grade of 138 g/t),the Baiyinchagandongshan deposit(silver metal amount of 9446 t with average grade of 187 g/t),the Huaobaote deposit(silver metal amount of 6852 t with average grade of 170 g/t),and the Fuxingtun deposit(silver metal amount of 5240 t with average grade of 196 g/t).The silver deposits are mainly distributed in the central and south of the Daxing’anling area,and mainly formed in the Yanshanian period.The silver polymetallic deposits in the Daxinganling area are significantly controlled by regional faults and the junction zone of volcanic rock basins and their margins.The north-east trending deep faults are the most important ore-controlling structures in this area.The distribution of silver polymetallic deposits along the main faults is obvious,and the intersection area of multiple groups of faults often form important mine catchments.The Permian is the most important ore-bearing formation in this area,but some important silver polymetallic deposits occur in Mesozoic volcanic basins or pre-Mesozoic strata.The magmatic rocks related to mineralization are mainly intermediate acidic or acidic intrusions,intermediate acidic lavas,pyroclastic rocks,and small intrusions of ultra-shallow or shallow facies of the Yanshanian Period.The mineralization element combination is mainly determined by the elemental geochemical background of surrounding rocks or source layers.In addition,the type of deposit,the distance from the mineralization center,and the degree of differentiation of ore-forming rock mass are also important influence factors.The article analyzes the prospecting prospects of each silver deposit type in the study area,discusses the relationship between mineralization center and deep prospecting,and proposes that porphyry silver deposits should be paid attention to.In the prospecting and exploration of silver deposits,comprehensive evaluation and multi-target prospecting need to be strengthened because silver can coexist or be associated with a variety of metals. 展开更多
关键词 Silver deposit Deposit type Porphyry silver deposit Supergiant silver deposit metallogenesis Mineral exploration engineering Prospecting direction Daxing’anling Inner Mongolia
下载PDF
Introduction to “Metallogenesis of Continental Collision”
10
作者 HAO Ziguo FEI Hongcai +1 位作者 HAO Qingqing LIU Lian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第1期300-301,共2页
There is a general consensus that Plate Tectonics can explain metallogenesis based on the collisions between oceanic and continental crust. For instance, the large-sized porphyry copper deposits that occur along the C... There is a general consensus that Plate Tectonics can explain metallogenesis based on the collisions between oceanic and continental crust. For instance, the large-sized porphyry copper deposits that occur along the Cordillera of the Andes around the east coast of the Pacific, and in the Phillipines, Malaysia and Indonesia along the western coast of the Pacific that sit upon the massive Pacific plates. They are considered to be typical of deposits resulting from collision between the oceanic and continental crust. Many experts, however, have long held a negative view about whether the collision between continental crusts can lead to metallogenesis. In recent years, Chinese geologists have proposed a new concept for "Continent-Continent Collision Metallogenesis" after many years of studying in the Qinghai--Tibet Plateau. Here we give a brief introduction to this idea. 展开更多
关键词 metallogenesis of Continental Collision Introduction to
下载PDF
Geological Characteristics and Its Metallogenesis of Daolundaba Copper Polymetallic Deposits,Inner Mongolia
11
作者 PAN Xiao-fei1,HOU Zeng-qian1,WANG Shuo2,TONG Ying1,XUE Huai-min1,ZHOU Xi-wen1,XIE Yu-ling3(1.Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China 2.Inner Mongolia Geological Prospecting Limited Company,010020,China 3.University of Science and Tectonlogy Beijing,Beijing 100029,China) 《矿物学报》 CAS CSCD 北大核心 2011年第S1期86-87,共2页
1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the... 1 Geology Daolundaba copper polymetallic deposit occurs in West Ujimqin Banner,the Xilin Gol League of Inner Mongolia,along the west side of South part of Daxinganling ore belt,whose tectonic position just lies at the junction of Siberian Block in the south part,North China Block in the north and Songliao block in the east.The Daolundaba copper polymetallic deposit is hosted by the Lower Proterozoic Baoyintu group of biotite-plagioclase gneiss(Pt1by),upper Permian Linxi formation of sandy slate(P2l),and the Hercynian Qianjinchang pluton of biotite granite. 展开更多
关键词 In Geological Characteristics and Its metallogenesis of Daolundaba Copper Polymetallic Deposits Inner Mongolia PB
下载PDF
Metallogenesis and Geodynamic Setting of the Early Paleozoic Orogenic Gold Deposits in the North Altyn
12
作者 WANG Yong CHEN Bailin +1 位作者 CHEN Zhengle WU Yu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期1047-1048,共2页
The North Altyn has underwent a complex tectonic history in the Early Paleozoic and formed a number of orogenic gold deposits controlled by ductile to brittle shear zones adjacent to the southern side of the Northern ... The North Altyn has underwent a complex tectonic history in the Early Paleozoic and formed a number of orogenic gold deposits controlled by ductile to brittle shear zones adjacent to the southern side of the Northern Altyn Tagh fault e.g. the Dapinggou, Beiketan and Xiangyun. The Dapinggou gold deposit, a typical orogenic gold deposit in North Altyn, is predominantly hosted in the Precambrian carbonate and Cambrian volcano- sedimentary rocks which were strongly deformed and were subjected to low-grade metamorphism. The ore bodies occurred in K-feldspar quartz veins and hydrothermally altered mylonite within the ductile shear belt. Hydrothermal alteration including silicification, pyritization. 展开更多
关键词 GOLD metallogenesis and Geodynamic Setting of the Early Paleozoic Orogenic Gold Deposits in the North Altyn
下载PDF
Characteristics of Fluid Inclusions and Metallogenesis of Annage Gold Deposit in Qinghai Province, China
13
作者 Jianqing Lai Peijiao Ju +2 位作者 Jinjin Tao Baorong Yang Xiaoyun Wang 《Open Journal of Geology》 2015年第11期780-794,共15页
The?Annage gold deposit is located at the east part of the eastern Kunlun orogenic belt. The characteristics of ore-forming fluids and metallogenesis were discussed by using fluid petrography, micro-thermometry and hy... The?Annage gold deposit is located at the east part of the eastern Kunlun orogenic belt. The characteristics of ore-forming fluids and metallogenesis were discussed by using fluid petrography, micro-thermometry and hydrogen-oxygen isotope analysis. Three stages, namely quartz-pyrite stage (A), quartz-polymetallic-sulfide stage (B) and quartz-ankerite stage (C) were included in the hydrothermal process as indicated by the results of this study. Inclusions developed in ore-bearing quartz veins from stages A and B are of three types: aqueous inclusions (type I), CO2-bearing inclusions (type II) and pure CO2?inclusions (type III). All three types of inclusions, mainly type I, are presented in stage A, having homogenization temperatures at 180°C - 360°C, and salinities ranging from 0.53% to 21.44%. In addition to development of type I inclusions, type II and III inclusions increase significantly in stage B, with homogenization temperatures ranging from 160°C to 330°C, and salinities are from 1.32% to 22.01%. Based on micro-thermometry, fluids in Annage deposit are of H2O-NaCl-CO2?type with medium-high temperature (140°C - 395°C) and medium-low salinity (0.53% - 22.01%). Results of hydrogen-oxygen isotope analysis show that ore-forming fluid is mainly CO2-rich magmatic fluid, mixed with shallow groundwater or metamorphic hydrothermal in the late mineralization stages. Calculated metallogenic pressures are in the range of 79 - 130MPa corresponding to a maximum depth of 4.8 km. The Annage deposit is a mesothermal quartz vein type gold deposit. 展开更多
关键词 FLUID INCLUSIONS Hydrogen-Oxygen Isotope ORE-FORMING FLUID metallogenesis Annage China
下载PDF
A PRELIMINARY STUDY ON METALLOGENESIS OF THE LAMASU COPPER POLYMETALLIC ORE DEPOSIT, XINJIANG
14
作者 LAI Jian qing, PENG Sheng lin, SHAO Yong jun, WANG He (Institute of Geology, Central South University, Changsha 410083, China) 《Geotectonica et Metallogenia》 2001年第1期156-159,共4页
The Lamasu copper polymetallic mineralized region lies in the south of Wenquan County, Xinjiang and in the Northwest lakeside of the Sailimu Lake. Seen from the geotectonic position, it belongs to North Tianshan geodo... The Lamasu copper polymetallic mineralized region lies in the south of Wenquan County, Xinjiang and in the Northwest lakeside of the Sailimu Lake. Seen from the geotectonic position, it belongs to North Tianshan geodome system, Tianshan diwa region, Central Asian crustobody. Copper and zinc polymetallic ore bodies had been formed in the skarn of the contact, between the metamophic carbonate rocks of the Kuximqiek Group, Jixian System and early mid Varisean acidic rockbodies. The formation of the ore deposit was the result of the successive activities of the crust and mantle and the tectonic and magmatic activities. 展开更多
关键词 ROCK A PRELIMINARY STUDY ON metallogenesis OF THE LAMASU COPPER POLYMETALLIC ORE DEPOSIT XINJIANG ORE
下载PDF
Phanerozoic Tectonic Evolution,Metallogenesis and Formation of Mineral Systems in China
15
作者 CHEN Xuanhua HAN Lele +6 位作者 DING Weicui XU Shenglin TONG Ying ZHANG Yiping LI Bing ZHOU Qi WANG Ye 《Acta Geologica Sinica(English Edition)》 SCIE CAS 2024年第4期819-842,共24页
The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisi... The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisions and/or collages,and post collisional(orogenic)extensions in Phanerozoic.Tectonic evolution of the Asia brings up a unique fault system and tectonic geomorphological features in the China's Mainland.Also,it provides a geodynamic background for the formation and evolution of metallogeneses and mineral systems,resulting in nonuniform distribution of tectono-metallogenic systems and metallogenic belts.The spatiotemporal distribution of mineral deposits in China and adjacent areas exhibits periodic variation under controlling of the full life Wilson cycle and tectonic evolution,forming the plate convergence-related mineral system in East Asia.Porphyry Cu deposits are mainly related to compressional systems in Paleozoic and early Mesozoic,and more closely related to post-collision extensional settings in late Mesozoic and Cenozoic.Orogenic Au deposits mainly formed in post-orogeny extensional setting.Alkaline rock related rare earth element deposits formed mainly at margins of the North China and Yangtze cratons.Granite-pegmatite Li and other rare metal deposits formed mainly in early Mesozoic,related to Indosinian post-orogeny extension.Tectono-metallogenic systems provide important basis for the prospecting of mineral resources. 展开更多
关键词 tectonic evolution geodynamic system post-orogenic extension metallogenesis tectono-metallogenic system East Asia
下载PDF
Mineral Geochemistry of Apatite in the Jiama PorphyrySkarn Deposit,Tibet and its Geological Significance
16
作者 YANG Yang TANG Juxing +8 位作者 ZHANG Zebin TANG Pan XIE Fuwei RAN Fengqin YANG Zongyao YANG Huaichao BAI Yun SUN Miao QI Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期399-415,共17页
The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemi... The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit. 展开更多
关键词 APATITE metallogenesis mineral geochemistry PORPHYRY JIAMA TIBET
下载PDF
Accretionary processes and metallogenesis of the Central Asian Orogenic Belt:Advances and perspectives 被引量:38
17
作者 Wenjiao XIAO Dongfang SONG +6 位作者 Brian FWINDLEY Jiliang LI Chunming HAN Bo WAN Ji'en ZHANG Songjian AO Zhiyong ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第3期329-361,共33页
As one of the largest Phanerozoic orogens in the world,the Central Asian Orogenic Belt(CAOB)is a natural laboratory for studies of continental dynamics and metallogenesis.This paper summarizes the research progresses ... As one of the largest Phanerozoic orogens in the world,the Central Asian Orogenic Belt(CAOB)is a natural laboratory for studies of continental dynamics and metallogenesis.This paper summarizes the research progresses of the accretionary processes and metallogenesis of the CAOB since the Peopled Republic of China was founded,and puts forward the prospect for future research.During the early period(1950s-1970s),several geological theories were applied to explain the geological evolution of Central Asia.In the early period of China's reform and opening-up,the plate tectonics theory was applied to explain the evolution of the northern Xinjiang and Xingmeng regions,and the opinion of subduction-collision between Siberian Kazakhstan and China-North Korea-Tarim plates was proposed.The idea of the Solonker-Yanbian suture zone was established.In the 1990s,the study of the CAOB entered a period of rapid development.One school of scholars including geologists from the former Soviet Union proposed a multi-block collision model for the assemblage of the CAOB.In contrast,another school of scholars,led by a Turkish geologist,Celal Sengor,proposed that the Altaids was formed through the growth and strike-slip duplicates of a single island arc,and pointed out that the Altaids is a special type of collisional orogen.During this period,Chinese geologists carried out a lot of pioneering researches on ophiolites and high-pressure metamorphic rocks in northern China,and confirmed the main suture zones accordingly.In 1999,the concept of"Central Asian metallogenic domain"was proposed,and it became one of the three major metallogenic domains in the world.Since the 21st century,given the importance for understanding continental accretion and metallogenic mechanism,the CAOB has become the international academic forefront.China has laid out a series of scientific research projects in Central Asia.A large number of important scientific research achievements have been spawned,including the tectonic attribution of micro-continents,timing and tectonic settings of ophiolites,magmatic arcs,identification and anatomy of accretionary wedges,regional metamorphism-deformation,(ultra)high-pressure metamorphism,ridge subduction plume-plate interaction archipelagic paleogeography and spatio-temporal framework of multiple accretionary orogeny,continental growth accretionary metallogenesis,structural superposition and transformation etc.These achievements have made important international influences.There still exist the following aspects that need further study:(1)Early evolution history and subduction initiation of the Paleo-Asian Ocean;(2)The accretionary mechanism of the extroversion Paleo-Asian Ocean;(3)The properties of the mantle of the Paleo-Asian Ocean and their spatiotemporal distribution;(4)The interaction between the Paleo-Asian Ocean and the Tethys Ocean;(5)Phanerozoic continental growth mechanism and its global comparison;(6)Accretionary metallogenic mechanism of the Central Asian metallogenic domain;and(7)Continental transformation mechanism. 展开更多
关键词 CAOB Accretionary orogenic processes metallogenesis Research progress Research frontier
原文传递
Isotopic indication to source of ore materials and fluids of the Wangfeng gold deposit in Tianshan: A case study of metallogenesis during collisional orogenesis 被引量:11
18
作者 陈华勇 鲍景新 +3 位作者 张增杰 刘玉琳 倪培 凌洪飞 《Science China Earth Sciences》 SCIE EI CAS 2000年第S1期156-166,共11页
The Wangfeng gold deposit is one of the five most important gold deposits in the Tian-shan. Studies of its metallogenic time, space, geodynamic background, ore feature and ore fluid have proved that the deposit formed... The Wangfeng gold deposit is one of the five most important gold deposits in the Tian-shan. Studies of its metallogenic time, space, geodynamic background, ore feature and ore fluid have proved that the deposit formed in the late Paleozoic continental collision, and consequently is a suitable delegate to probe mineralizing regularities during collisiona! orogenesis. Isotopic studies including O, D, C, S, Pb and Sr reveal ore materials derived from sedimentary association (including carbonate and sulfate), which further refers to the Hercynian carbonate-silicolite-argillite formation north to Wangfeng camp. At the end of Paleozoic, the southward intracontinental subduction of Hercynian synthem along the Hongwuyueqiao fault down to the Central Tianshan terrane induced large-scale fluidization which extracted and out-transported ore materials from Hercynian synthem upto shallow fair positions, and finally resulted in the formation of the Wangfeng deposit. This study excludes the possibility of other 展开更多
关键词 TIANSHAN Mountains Wangfeng gold deposit FLUIDIZATION ore MATERIALS isotope tectonic model for COLLISIONAL metallogenesis.
原文传递
Metallogenesis within continental collision zones: Comparisons of modern collisional orogens 被引量:12
19
作者 Hongrui ZHANG Zengqian HOU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第12期1737-1760,共24页
Modern collisional orogens represent the natural laboratory for the study of metallogeny in continental collision zones. The Pyrenees, Alps, Zagros and Himalaya are all associated with Neo-Tethyan subduction and repre... Modern collisional orogens represent the natural laboratory for the study of metallogeny in continental collision zones. The Pyrenees, Alps, Zagros and Himalaya are all associated with Neo-Tethyan subduction and represent the youngest collisional orogens on Earth. Here, we compare these four orogens in terms of their composition, architecture, tectonic evolution,and metallogenic systems. The four orogens can be divided into simple and composite types. Simple orogens are represented by the Pyrenees and the Alps, and are characterized by narrow linear shapes in plain view and symmetric structures in cross-section,are free of arc magmatism, and are associated with the Mississippi Valley Valley-type Pb-Zn and orogenic gold deposits. The mineral deposits that form in these simple collisional orogens are generally related to processes that occur in the middle and upper crust. In contrast, composite orogens, as exemplified by the Zagros-Iranian and Himalayan-Tibetan Plateaus, are associated with broad orogenic plateaus in plain view and asymmetrical structures in cross-section, record extensive arc magmatism in continental margins, and are associated with a variety of deposit types including carbonatite-related rare earth element(REE),porphyry Cu-Mo, orogenic Au, Mississippi Valley type Pb-Zn, and detachment-fault-related polymetallic deposits. Although the subduction of Neo-Tethys oceanic crust occurred before the creation of simple collisional orogens in the Pyrenees and the Alps,these areas do not show the record of continental arc magmatism. In contrast, the composite collisional orogens are associated with the development of huge continental margin arcs prior to continental subduction, and the subduction was followed by reactivation of the subduction-modified arc lithospheric material, generating the ore-forming systems in these regions. 展开更多
关键词 PYRENEES Alps ZAGROS Himalaya COLLISIONAL OROGENY ACCRETIONARY OROGENY COLLISIONAL metallogenesis
原文传递
Petrogenesis and metallogenesis of the Yanshanian adakite-like rocks in the Eastern Yangtze Block 被引量:11
20
作者 王强 赵振华 +4 位作者 许继峰 李献华 包志伟 熊小林 刘义茂 《Science China Earth Sciences》 SCIE EI CAS 2003年第z1期164-176,共13页
Many of the Yanshannian intermediate-acid intrusive rocks related to Cu-Au mineraliza-tion in the Eastern Yangtze Block are characterized by high AI2O3, Sr contents, while low in Y, Yb contents, thus with high Sr/Y, a... Many of the Yanshannian intermediate-acid intrusive rocks related to Cu-Au mineraliza-tion in the Eastern Yangtze Block are characterized by high AI2O3, Sr contents, while low in Y, Yb contents, thus with high Sr/Y, and La/Yb ratios, and variational isotope signatures in particular, e.g. εNd(t) = -11.92-1.96, (143Nd/144Nd): = 0.5120-0.5125, TDM= 0.70-1.71 Ga, (7Sr/86Sr), = 0.7043 -0.7076. The geochemical characteristics of these rocks suggest that: (1) these rocks are geo-chemically similar to adakite, which might have been stemmed from the partial melting of thick-ened basaltic lower crust due to basalt underplating; and (2) the high pressure (1.2-4.0 GPa) and high temperature (850-1150℃) surroundings of the lower crust favor both the fluid and ada-kite-like magma to generation. Not only can the adakite-like magma carry abundant fluid and Cu-Au ore-froming materials, but also can it bring them to the shallow part with ease and contrib-utes to the Cu-Au mineralization. 展开更多
关键词 ADAKITE Cu-Au metallogenesis UNDERPLATING Yanshanian Period Yangtze Block.
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部