The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region ...The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift.展开更多
Marble is a metamorphic rock, which is one of the 3 basic rock types (magmatic, sedimentary, metamorphic) forming the earth’s crust. The major characteristic sought after in a rock mass in the field for it to be expo...Marble is a metamorphic rock, which is one of the 3 basic rock types (magmatic, sedimentary, metamorphic) forming the earth’s crust. The major characteristic sought after in a rock mass in the field for it to be exportable and usable as marble is its suitability to be cut in blocks. In the process of producing marble slabs from marble blocks, the blocks are expected not to contain potentially problematic hard or weak zones and their geomechanical and chemical properties should conform to the relevant standards. Ignoring of the geological properties of the rock in the process of deciding for marble production at a marble site and determination of production location, direction and method is the most important parameter that would increase production loss. In order to reduce losses by determination of geological properties of marble, many academic studies have been conducted on the effects of water saturation, temperature, freezing and thawing on its mechanical and fracture properties. There are further studies on crack propagation in marble under stress. However, even those marble blocks that are obtained based on geological parameters may suffer serious cracks or fractures due to stresses caused by their weight and geometry. Therefore, cutting direction is of critical importance in order to minimize marble waste in the process of cutting a marble block which is brought to the inventory or processing site with cracks, cavities or fractures. Certain studies exist within such context, where the geometry of the discontinuity within a block is determined using non-destructive methods, such as ultrasonic testing, in order to determine the appropriate cutting direction. Such studies made use of ultrasonic waves to determine the physical and chemical structures of magmatic and sedimentary rocks by measuring the progress velocity of sonic waves in the rock. Said studies, however, mostly worked on sedimentary and magmatic rock specimens, focusing less on metamorphic rocks such as marble due to their anisotropic properties. Understanding the academic literature studies on marble would provide significant contribution to the reduction of production losses during the processing marble blocks in processing plants and the achievement of production efficiency levels that are within economic limits. Within such scope, this study has reviewed the past academic studies on marble, classified them under 6 categories, and comprehensively analyzed each category based on materials, testing setups, test specimens, test parameters and research techniques.展开更多
Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The e...Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.展开更多
Study practice has proved that the ultrahigh pressure metamorphic rocks iu Dabieshan must have exPerienced botk the retrograde metumorphism and partial melting under decompression and amphibolite-facies conditions dur...Study practice has proved that the ultrahigh pressure metamorphic rocks iu Dabieshan must have exPerienced botk the retrograde metumorphism and partial melting under decompression and amphibolite-facies conditions during their exhumation from mantel depth to lower-middle crust.The retrometamorphism and partial melting of the ultrahigh pressure rocks in association with thermal state changing in the middle-lower crust, under amphibolite-facies conditions, are important physical and chemical processes. It would result in a great detrease in the integrated yield strength, and the enhancement of the de formabilitY or the rocks, promoting the transition from contractional (collision) to extensional defoemational regime. The statement of tbe retrometamorphism and partial melting of the ultrahigh pressure rocks has proved the in-site model for the ultrahigh pressure rocks in Dabieshan. It not only clarifies the evolutiou from the UHP eclogite to the surrounding gneissic rock (so called UHP gueiss) and to the garnet-beariug roliated granites (non-UHP country rocks), but also provides scientific arguments for the establiskment of the dynamic model of the exhumation of UHP metamorphic rocks in Dabiesban. In general, Purely conductive heat transfer from the crust itself is probably insurficient to produce temperature conditions for partial melting, and additional heat sources must have been present during partial melting. We infer that the partial melting and extensional flow are probably driveu by delamination and magmatic underplating of thickeued lithospkeric mantle following the continental oblique collision.展开更多
Assessment of drillability of rocks is vital in the selection,operation,and performance evaluation of cutting tools used in various excavation machinery deployed in mining and tunneling.The commonly used rock drillabi...Assessment of drillability of rocks is vital in the selection,operation,and performance evaluation of cutting tools used in various excavation machinery deployed in mining and tunneling.The commonly used rock drillability prediction methods,namely,drilling rate index(DRI)and Cerchar hardness index(CHI)have limitations in predicting the penetration rate due to differential wear of the cutting tool in rocks with varied hardness and abrasivity.Since cutting tools get blunt differently in different rocks,the stress beneath the tip of the bit decreases until it reaches a threshold value beyond which the penetration rate becomes constant.In this research,a new composite penetration rate index(CPRI)is suggested based on the investigations on four metamorphic rocks viz.quartzite,gneiss,schist and phyllite with varied hardness-abrasivity values.The penetration-time behavior was classified into active,moderate,passive,and dormant phases based on the reduction in penetration rate at different stages of drilling.A comparison of predicted penetration rate values using DRI and CPRI with actual penetration rate values clearly establishes the supremacy of CPRI.Micro-structure and hardness-based index was also developed and correlated with CPRI.The new indices can help predict cutting tool penetration and its consumption more accurately.展开更多
Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic b...Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the HP metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The two- mica albite gneisses have 206 Pb/ 204 Pb=17.657-18.168, 207 Pb/ 204 Pb=15.318-15.573, 208 Pb/ 204 Pb=38.315-38.990, and the eclogites have 206 Pb/ 204 Pb=17.599-18.310, 207 Pb/ 204 Pb=15.465- 15.615 , 208 Pb/ 204 Pb=37.968-39.143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have 206 Pb/ 204 Pb=17.128-17.434, 207 Pb/ 204 Pb=15.313-15.422 and 208 Pb/ 204 Pb=37.631-38.122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.展开更多
The Xiaotongjiapuzi gold deposit occurs in a Palaeoproterozoic rift accretionary terrane in eastern Liaoning and is hosted by a carbonate formation of the Dashiqiao Formation, Liaohe Group. The metamorphic grade of th...The Xiaotongjiapuzi gold deposit occurs in a Palaeoproterozoic rift accretionary terrane in eastern Liaoning and is hosted by a carbonate formation of the Dashiqiao Formation, Liaohe Group. The metamorphic grade of the host rock is low amphibolite-high greenschist facies. Gold, which is mainly invisible, is distributed in pyrite and arsenopyrite. The grains of Au-bearing sulphide minerals are fine, ranging from 0.0 n to 1 mm. The wall-rock alterations are characterized by low-temperature silification, hydro-sericitization, sericitization and carbonatization. The homogenization temperatures of the fluid inclusions in quartz closely associated with gold mineralization range from 140 to 240°C. The metallogenic age represented by the Ar-Ar isotopic age of sericite is 167 Ma. Comparisons and studies show that the Xiaotongjiapuzi gold deposit can be classified as the submicron-sized disseminated deposit (analogous to the Carlin-type) hosted in metamorphic rocks.展开更多
Deep-seated large-scale toppling failure presents unique challenges in the study of natural slope deformation process in mountainous regions.An active deep-seated toppling process was identified in the Erguxi slope lo...Deep-seated large-scale toppling failure presents unique challenges in the study of natural slope deformation process in mountainous regions.An active deep-seated toppling process was identified in the Erguxi slope located in southwest China,which affected a large area and damaged critical transportation infrastructure with the volume of the deforming rock mass exceeding 24×10~6 m^3.It poses significant risks to the downstream Shiziping Hydropower Station by damming the Zagunao River.Field investigation and monitoring results indicate that the deformation of the Erguxi slope is in the advanced stage of deep-seated toppling process,with the formation of a disturbed belt but no identifiable master failure surface.It was postulated that the alternating tensile and shear strength associated with the hard/soft laminated rock strata of metasandstone and phyllite layers preclude the development of either a tensile or shear failure surface,which resulted in the continuous deformation and displacement without a catastrophic mass movement.The slope movement is in close association with the unfavorable geological conditions of the study area in addition to the construction of transportation infrastructure and the increase of the reservoir level.On the basis of the mechanism and intensity of the ongoing toppling deformation,a qualitative grading system was proposed to describe the toppling process and toevaluate the slope stability.This paper summarized the field observation and monitoring data on the toppling deformation for better characterizing its effect on the stability of the Erguxi slope.The qualitative grading system intends to provide a basis for quantitative study of large-scale deep-seated toppling process in metamorphic rocks.展开更多
Lame modulus (λ) and shear modulus (μ) are among the most important, intrinsic, elastic constants of rocks. Using 7. and μ could be much more advantageous than using P- and S-wave velocities (Vp and Vs). Here...Lame modulus (λ) and shear modulus (μ) are among the most important, intrinsic, elastic constants of rocks. Using 7. and μ could be much more advantageous than using P- and S-wave velocities (Vp and Vs). Here we quantified these equivalent isotropic elastic moduli for 115 representative rocks from the ultrahigh pressure (UHP) metamorphic terrane of the Dabie-Sulu orogenic belt (China) and their variations with pressure (P), temperature (T), density (p), Vp, Vs and mineralogical composition. Both moduli increase nonlinearly and linearly with increasing pressure at low (〈200-300 MPa) and high (〉200-300 MPa) pressures, respectively. In the regime of high pressures, 7. and IX decrease quasi-linearly with increasing temperature with temperature derivatives dλ/dT and dμ/dT generally in the range of -10×10-3 to -1×10-3 GPa/℃. Dehydration of water-bearing minerals such as serpentine in peridotites and chlorite in retrograde eciogites results in an abrupt drop in 7. while μ remains almost unchanged. In Z-p, μ-p and 7.-IX plots, the main categories of UHP rocks can be characterized. Serpentinization leads to significant decreases in μ and 7. as serpentine has extremely low values of Z, μ and p. Eclogites, common mafic rocks (mafic gneiss, metagabbro and amphibolite), and felsic rocks (orthogneiss and paragneiss) have high, moderate and low μ and λ values, respectively. For pyroxenes and olivines, λ increases but μ decreases with increasing Fe/Mg ratios. For plagioclase feldspars, both Z and μ exhibit a significant positive correlation with anorthite content. SiO2-rich felsic rocks and quartzites are deviated remarkably from the general trend lines of the acid-intermediate-mafic rocks in Vs-p, μ-p, λ-Vp,λ-Vs and μ-λ diagrams because quartz has extremely low λ (-8.1 GPa) and p (2.65 g/cm3) but moderate μ (44.4 GPa) values. Increasing the contents of garnet, rutile, ilmenite and magnetite results in a significant increase in the λ and μ values of the UHP metamorphic rocks. However, either λ or μ is insensitive to the compositional variations for pyralspite (pyrope-almandine-spessartine) solution series. The results provide potentially improved constraints on characterization of crustal composition based on the elastic properties of rocks and in situ seismic data from deep continental roots.展开更多
Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of...Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of UHP slab.Partial melting of UHP metamorphic rocks can dramatically affect the rheology of deeply subducted crust and thus play a crucial role in accelerating the exhumation of UHP slabs.展开更多
This paper reports Precambrian rock magnetic fabrics in the Nyalam area of southern Tibet. The analytical results of magnetic fabrics show that the values of H are high (〉 10% in general), so the ductile deformatio...This paper reports Precambrian rock magnetic fabrics in the Nyalam area of southern Tibet. The analytical results of magnetic fabrics show that the values of H are high (〉 10% in general), so the ductile deformations of the Precambrian rock are strong. The orientation of the maximum principal stress inferred from the minimum magnetic susceptibility is nearly S-N, NE-SW and NW-SE. The Flinn diagram of the magnetic fabrics show that the strain pattern is oblate and constrictional type. Magnetic foliation of great majority of rock samples is well developed and the magnetic lineation is poor and the magnetic susceptibility ellipsoid is flattened. The magnetic lineation of the minority rock samples is well developed and the magnetic foliation is poor and the magnetic susceptibility ellipsoid is prolate. According to the geological field and the magnetic fabrics, there are 3 times tectonic stress field in SN directed extruding, NW-SE directed extruding, NW-SE directed extension. It shows that the Nyalam area has undergone process the orientation of SN, NW-SE nappe structure and NW-SE directed extension structure. The change of tectonic stress is reflected by the field characteristics of the Precambrian rock magnetic fabrics that is the direct responding result of the arc-continental, continent-continental collision between the India and Asian continents in the late part of the Late Cretaceous to Late Eocene and subsequently shifted to intra-continental convergent, the plateau uplifting and extension structure stage since the Late Eocene.展开更多
The most of high/ultrahigh-pressure(HP/UHP)terranes of the world are characterized by the occurrence of numerous pods,lenses or layered blocks of eclogite and amphibolites(e.g.O’Brien,1997;Elvevold and Gilotti,2000;Z...The most of high/ultrahigh-pressure(HP/UHP)terranes of the world are characterized by the occurrence of numerous pods,lenses or layered blocks of eclogite and amphibolites(e.g.O’Brien,1997;Elvevold and Gilotti,2000;Zhang et al.,2003;and references there in).Field and petrological features suggest that amphibolites should展开更多
The southern Anhui metamorphic terrane is traditionally regarded as a part of middle-lateProterozoic "Jiangnan Old Land". Based on the occurrence of palynomorphsAsperatopsophosphaera sp., Trachysphaeridium s...The southern Anhui metamorphic terrane is traditionally regarded as a part of middle-lateProterozoic "Jiangnan Old Land". Based on the occurrence of palynomorphsAsperatopsophosphaera sp., Trachysphaeridium sp. and Nucellosphaeridium sp. (late展开更多
Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin...Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin, and have been disputed in tectonic setting. Because of the stability in metamorphism, the rare earth elements indicate the features of their protoliths. The authors integrated the petrologic methods with the geochemical parameters which include ЕREE, ЕLREE/NHREE, δCe, δEu, La/Yb, Sm/Nd, Th/Sc and the standard values of chondrite. The results show that the protoliths of Wolengen Group may be a group of volcanoclastic and continental margin clastic rocks, and their tectonic setting is the continent island arc.展开更多
Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of suc...Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.展开更多
The early Precambrian high-grade metamorphosed basement in the Xi Ulanbulang area, central Inner Mongolia of China, is composed mainly of intermediate granulites and charnockitic gneisses. Both types of the rocks are ...The early Precambrian high-grade metamorphosed basement in the Xi Ulanbulang area, central Inner Mongolia of China, is composed mainly of intermediate granulites and charnockitic gneisses. Both types of the rocks are closely associated spatially and temporally, with a gradual variation between them. In order to understand timing of the high-grade metamorphism, we carried out SHRIMP U-Pb dating of zircons of the rocks. Zircons from the granulites and charnockitic gneisses are similar in structure and age. Zircon cores show magmatic zoning and have ages of 2507-2545 Ma. The ages are interpreted as the forming time of protolith of the granulites and charnockitic gneisses, indicating that a strong magmatism existed at that time in the Yinshan Block. The zircon mantles and rims show homogeneous structures and record a strong granulite facies metamorphism event around 2500 Ma, with a time interval between the metamorphism and magamatism being less than 50 Ma. These suggest that the Western Block was similar to the Eastern Block in tectono-thermal timing at the end of the Neoarchean.展开更多
The lithologies of the Chinese Continental Scientific Drilling main hole (CCSD-MH) are mainly comprised of orthogneiss,paragneiss,eclogite,amphibolite,and ultramafic rocks.The statistical results of logs of CCSD-MH ...The lithologies of the Chinese Continental Scientific Drilling main hole (CCSD-MH) are mainly comprised of orthogneiss,paragneiss,eclogite,amphibolite,and ultramafic rocks.The statistical results of logs of CCSD-MH indicate that ultramafic rocks are characterized by very high CNL (neutron log) and very low GR (gamma ray log) and RD (resistivity log);eclogites are characterized by high DEN (density),VP (P-wave velocity) and PE (photoelectric absorption capture cross section);orthogneiss and paragneiss are characterized by high GR,U (uranium content),Th (thorium content),K (potassium content) and RD,and low DEN,PE,and CNL;logging values of amphibolite are between the logging values of eclogites and paragneiss.In addition,the logs could reflect the degree of retrograde metamorphism of eclogites.The upper section (100-2 000 m) shows higher DEN,PE,VP,and lower GR,U,Th,K,RD than the lower section (2 000-5 000 m).Most logs of the upper section are more fluctuant than those of the lower section.This indicates that the upper section has more heterogeneities than the lower section.The cross plots of logs indicate that DEN,GR,K,and CNL are more powerful in identifying ultrahigh pressure metamorphic (UHPM) rocks at the CCSD-MH.GR value of the rocks from CCSD-MH shows obviously an increasing trend from ultramafic rock (the most mafic rocks at CCSD-MH) to orthogneiss (the most acid rocks at CCSD-MH).On the contrary,DEN value decreases from the ultramafic rock to the orthogneiss.CNL log is a good indicator of the content of structure water in crystalline rocks.展开更多
I found high Q values (Q-ratio=Jn/Ji, .In, Ji are remanent magnetization and induced magnetization) in the Sulu ultrahigh pressure (UHP) metamorphic rocks, eastern China which is the world's largest UHP metamorph...I found high Q values (Q-ratio=Jn/Ji, .In, Ji are remanent magnetization and induced magnetization) in the Sulu ultrahigh pressure (UHP) metamorphic rocks, eastern China which is the world's largest UHP metamorphic belt (Fig. 1 in Liu et al., 2009). Q values of 320 core samples with variable lithologies in the 100--2 000 m interval from the Chinese Continental Scientific Drilling (CCSD) main hole are as follows: values between 0.06 and 608.24, with an average of 15.56 for 171 eclogite samples;展开更多
Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite norm...Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite normalized REE patterns. Rocks in Group #1 are characterized by nearly flat REE patterns (Lan/Ybn=0.86-1.3), the lowest total REEs (29-52 ppm), and weak negative to positive Eu anomalies (Eun/Eun=0.84-1.02), nearly flat primitive mantle normalized patterns and strong negative Zr(Hf) anomalies. Their geochemical characteristics in REEs and trace elements are similar to those of ocean plateau tholeiite, which imply that this group of rocks can represent remnants of Archean oceanic crust derived from a mantle plume. Rocks in Group #2 are characterized by moderate total REEs (34-116 ppm), LREE-enriched (Lan/Ybn=1.76-4.34) chondrite normalized REE patterns with weak Eu anomalies (Eun/Eun=0.76-1.16), and negative Nb, Ta, Zr(Hf), Ti anomalies in the primitive mantle normalized spider diagram. The REE and trace element characteristics indicate that they represent arc magmas originating from a sub-arc mantle wedge metasomatized by slab-derived fluids. Rocks in Group #3 are characterized by the highest total REEs (61-192 ppm), the strongest LREEs enrichment (Lan/Ybn=7.12-16) with slightly negative Eu anomalies (Eun/Eun=0.81-0.95) in the chondrite normalized diagram. In the primitive mantle normalized diagram, these rocks are characterized by large negative anomalies in Nb, Ta, Ti, negative to no Zr anomalies. They represent arc magmas originating from a sub-arc mantle wedge enriched in slab-derived melts. The three groups of rocks imply that the formation of the Neoarchean Wutai Complex is related to mantle plumes and island-arc interaction.展开更多
The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
基金supported by Orient Resources Ltd.College of Earth Sciences,Jilin University。
文摘The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s degassing,as well as the mantle and crust’s uplift.
文摘Marble is a metamorphic rock, which is one of the 3 basic rock types (magmatic, sedimentary, metamorphic) forming the earth’s crust. The major characteristic sought after in a rock mass in the field for it to be exportable and usable as marble is its suitability to be cut in blocks. In the process of producing marble slabs from marble blocks, the blocks are expected not to contain potentially problematic hard or weak zones and their geomechanical and chemical properties should conform to the relevant standards. Ignoring of the geological properties of the rock in the process of deciding for marble production at a marble site and determination of production location, direction and method is the most important parameter that would increase production loss. In order to reduce losses by determination of geological properties of marble, many academic studies have been conducted on the effects of water saturation, temperature, freezing and thawing on its mechanical and fracture properties. There are further studies on crack propagation in marble under stress. However, even those marble blocks that are obtained based on geological parameters may suffer serious cracks or fractures due to stresses caused by their weight and geometry. Therefore, cutting direction is of critical importance in order to minimize marble waste in the process of cutting a marble block which is brought to the inventory or processing site with cracks, cavities or fractures. Certain studies exist within such context, where the geometry of the discontinuity within a block is determined using non-destructive methods, such as ultrasonic testing, in order to determine the appropriate cutting direction. Such studies made use of ultrasonic waves to determine the physical and chemical structures of magmatic and sedimentary rocks by measuring the progress velocity of sonic waves in the rock. Said studies, however, mostly worked on sedimentary and magmatic rock specimens, focusing less on metamorphic rocks such as marble due to their anisotropic properties. Understanding the academic literature studies on marble would provide significant contribution to the reduction of production losses during the processing marble blocks in processing plants and the achievement of production efficiency levels that are within economic limits. Within such scope, this study has reviewed the past academic studies on marble, classified them under 6 categories, and comprehensively analyzed each category based on materials, testing setups, test specimens, test parameters and research techniques.
文摘Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.
文摘Study practice has proved that the ultrahigh pressure metamorphic rocks iu Dabieshan must have exPerienced botk the retrograde metumorphism and partial melting under decompression and amphibolite-facies conditions during their exhumation from mantel depth to lower-middle crust.The retrometamorphism and partial melting of the ultrahigh pressure rocks in association with thermal state changing in the middle-lower crust, under amphibolite-facies conditions, are important physical and chemical processes. It would result in a great detrease in the integrated yield strength, and the enhancement of the de formabilitY or the rocks, promoting the transition from contractional (collision) to extensional defoemational regime. The statement of tbe retrometamorphism and partial melting of the ultrahigh pressure rocks has proved the in-site model for the ultrahigh pressure rocks in Dabieshan. It not only clarifies the evolutiou from the UHP eclogite to the surrounding gneissic rock (so called UHP gueiss) and to the garnet-beariug roliated granites (non-UHP country rocks), but also provides scientific arguments for the establiskment of the dynamic model of the exhumation of UHP metamorphic rocks in Dabiesban. In general, Purely conductive heat transfer from the crust itself is probably insurficient to produce temperature conditions for partial melting, and additional heat sources must have been present during partial melting. We infer that the partial melting and extensional flow are probably driveu by delamination and magmatic underplating of thickeued lithospkeric mantle following the continental oblique collision.
基金Authors thank the CPRI Project(NPP/2016/HY/1/13042016)for partially supporting the study.Support from NHPC Ltd.and NTPC Ltd.is also thankfully acknowledged.
文摘Assessment of drillability of rocks is vital in the selection,operation,and performance evaluation of cutting tools used in various excavation machinery deployed in mining and tunneling.The commonly used rock drillability prediction methods,namely,drilling rate index(DRI)and Cerchar hardness index(CHI)have limitations in predicting the penetration rate due to differential wear of the cutting tool in rocks with varied hardness and abrasivity.Since cutting tools get blunt differently in different rocks,the stress beneath the tip of the bit decreases until it reaches a threshold value beyond which the penetration rate becomes constant.In this research,a new composite penetration rate index(CPRI)is suggested based on the investigations on four metamorphic rocks viz.quartzite,gneiss,schist and phyllite with varied hardness-abrasivity values.The penetration-time behavior was classified into active,moderate,passive,and dormant phases based on the reduction in penetration rate at different stages of drilling.A comparison of predicted penetration rate values using DRI and CPRI with actual penetration rate values clearly establishes the supremacy of CPRI.Micro-structure and hardness-based index was also developed and correlated with CPRI.The new indices can help predict cutting tool penetration and its consumption more accurately.
文摘Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the HP metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The two- mica albite gneisses have 206 Pb/ 204 Pb=17.657-18.168, 207 Pb/ 204 Pb=15.318-15.573, 208 Pb/ 204 Pb=38.315-38.990, and the eclogites have 206 Pb/ 204 Pb=17.599-18.310, 207 Pb/ 204 Pb=15.465- 15.615 , 208 Pb/ 204 Pb=37.968-39.143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have 206 Pb/ 204 Pb=17.128-17.434, 207 Pb/ 204 Pb=15.313-15.422 and 208 Pb/ 204 Pb=37.631-38.122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.
文摘The Xiaotongjiapuzi gold deposit occurs in a Palaeoproterozoic rift accretionary terrane in eastern Liaoning and is hosted by a carbonate formation of the Dashiqiao Formation, Liaohe Group. The metamorphic grade of the host rock is low amphibolite-high greenschist facies. Gold, which is mainly invisible, is distributed in pyrite and arsenopyrite. The grains of Au-bearing sulphide minerals are fine, ranging from 0.0 n to 1 mm. The wall-rock alterations are characterized by low-temperature silification, hydro-sericitization, sericitization and carbonatization. The homogenization temperatures of the fluid inclusions in quartz closely associated with gold mineralization range from 140 to 240°C. The metallogenic age represented by the Ar-Ar isotopic age of sericite is 167 Ma. Comparisons and studies show that the Xiaotongjiapuzi gold deposit can be classified as the submicron-sized disseminated deposit (analogous to the Carlin-type) hosted in metamorphic rocks.
基金financially supported by the National Natural Science Foundation of China (Grant No.41572302 and Grant No.41130745)the Funds for Creative Research Groups of China (Grant No.41521002)the Open Research Fund from the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grant No.SKLGP2015K001)
文摘Deep-seated large-scale toppling failure presents unique challenges in the study of natural slope deformation process in mountainous regions.An active deep-seated toppling process was identified in the Erguxi slope located in southwest China,which affected a large area and damaged critical transportation infrastructure with the volume of the deforming rock mass exceeding 24×10~6 m^3.It poses significant risks to the downstream Shiziping Hydropower Station by damming the Zagunao River.Field investigation and monitoring results indicate that the deformation of the Erguxi slope is in the advanced stage of deep-seated toppling process,with the formation of a disturbed belt but no identifiable master failure surface.It was postulated that the alternating tensile and shear strength associated with the hard/soft laminated rock strata of metasandstone and phyllite layers preclude the development of either a tensile or shear failure surface,which resulted in the continuous deformation and displacement without a catastrophic mass movement.The slope movement is in close association with the unfavorable geological conditions of the study area in addition to the construction of transportation infrastructure and the increase of the reservoir level.On the basis of the mechanism and intensity of the ongoing toppling deformation,a qualitative grading system was proposed to describe the toppling process and toevaluate the slope stability.This paper summarized the field observation and monitoring data on the toppling deformation for better characterizing its effect on the stability of the Erguxi slope.The qualitative grading system intends to provide a basis for quantitative study of large-scale deep-seated toppling process in metamorphic rocks.
基金supported by the Sino Probe-deep exploration in Ministry of land and Resources of China(Sino Probe-07)the knowledge Innovation Program from Guangzhou Institute of Geochemistry,the Chinese Academy of Sciences(GIGCX-09-02)+1 种基金This is contribution No.IS-1386 from GIGCASthe Natural Sciences and Engineering Council of Canada and the Chinese Academy of Geological Sciences for the discovery and research grants(No.1212011121274)
文摘Lame modulus (λ) and shear modulus (μ) are among the most important, intrinsic, elastic constants of rocks. Using 7. and μ could be much more advantageous than using P- and S-wave velocities (Vp and Vs). Here we quantified these equivalent isotropic elastic moduli for 115 representative rocks from the ultrahigh pressure (UHP) metamorphic terrane of the Dabie-Sulu orogenic belt (China) and their variations with pressure (P), temperature (T), density (p), Vp, Vs and mineralogical composition. Both moduli increase nonlinearly and linearly with increasing pressure at low (〈200-300 MPa) and high (〉200-300 MPa) pressures, respectively. In the regime of high pressures, 7. and IX decrease quasi-linearly with increasing temperature with temperature derivatives dλ/dT and dμ/dT generally in the range of -10×10-3 to -1×10-3 GPa/℃. Dehydration of water-bearing minerals such as serpentine in peridotites and chlorite in retrograde eciogites results in an abrupt drop in 7. while μ remains almost unchanged. In Z-p, μ-p and 7.-IX plots, the main categories of UHP rocks can be characterized. Serpentinization leads to significant decreases in μ and 7. as serpentine has extremely low values of Z, μ and p. Eclogites, common mafic rocks (mafic gneiss, metagabbro and amphibolite), and felsic rocks (orthogneiss and paragneiss) have high, moderate and low μ and λ values, respectively. For pyroxenes and olivines, λ increases but μ decreases with increasing Fe/Mg ratios. For plagioclase feldspars, both Z and μ exhibit a significant positive correlation with anorthite content. SiO2-rich felsic rocks and quartzites are deviated remarkably from the general trend lines of the acid-intermediate-mafic rocks in Vs-p, μ-p, λ-Vp,λ-Vs and μ-λ diagrams because quartz has extremely low λ (-8.1 GPa) and p (2.65 g/cm3) but moderate μ (44.4 GPa) values. Increasing the contents of garnet, rutile, ilmenite and magnetite results in a significant increase in the λ and μ values of the UHP metamorphic rocks. However, either λ or μ is insensitive to the compositional variations for pyralspite (pyrope-almandine-spessartine) solution series. The results provide potentially improved constraints on characterization of crustal composition based on the elastic properties of rocks and in situ seismic data from deep continental roots.
基金financially supported by the National Nature Science Foundation of China (grant No.41572053)
文摘Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of UHP slab.Partial melting of UHP metamorphic rocks can dramatically affect the rheology of deeply subducted crust and thus play a crucial role in accelerating the exhumation of UHP slabs.
基金Acknowledgements This work was supported by China Geological Survey (Grant No. H45C004002, 1212010784007) and the Project of the National Natural Science Foundation of China (Grant No. 40272012).
文摘This paper reports Precambrian rock magnetic fabrics in the Nyalam area of southern Tibet. The analytical results of magnetic fabrics show that the values of H are high (〉 10% in general), so the ductile deformations of the Precambrian rock are strong. The orientation of the maximum principal stress inferred from the minimum magnetic susceptibility is nearly S-N, NE-SW and NW-SE. The Flinn diagram of the magnetic fabrics show that the strain pattern is oblate and constrictional type. Magnetic foliation of great majority of rock samples is well developed and the magnetic lineation is poor and the magnetic susceptibility ellipsoid is flattened. The magnetic lineation of the minority rock samples is well developed and the magnetic foliation is poor and the magnetic susceptibility ellipsoid is prolate. According to the geological field and the magnetic fabrics, there are 3 times tectonic stress field in SN directed extruding, NW-SE directed extruding, NW-SE directed extension. It shows that the Nyalam area has undergone process the orientation of SN, NW-SE nappe structure and NW-SE directed extension structure. The change of tectonic stress is reflected by the field characteristics of the Precambrian rock magnetic fabrics that is the direct responding result of the arc-continental, continent-continental collision between the India and Asian continents in the late part of the Late Cretaceous to Late Eocene and subsequently shifted to intra-continental convergent, the plateau uplifting and extension structure stage since the Late Eocene.
文摘The most of high/ultrahigh-pressure(HP/UHP)terranes of the world are characterized by the occurrence of numerous pods,lenses or layered blocks of eclogite and amphibolites(e.g.O’Brien,1997;Elvevold and Gilotti,2000;Zhang et al.,2003;and references there in).Field and petrological features suggest that amphibolites should
文摘The southern Anhui metamorphic terrane is traditionally regarded as a part of middle-lateProterozoic "Jiangnan Old Land". Based on the occurrence of palynomorphsAsperatopsophosphaera sp., Trachysphaeridium sp. and Nucellosphaeridium sp. (late
文摘Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin, and have been disputed in tectonic setting. Because of the stability in metamorphism, the rare earth elements indicate the features of their protoliths. The authors integrated the petrologic methods with the geochemical parameters which include ЕREE, ЕLREE/NHREE, δCe, δEu, La/Yb, Sm/Nd, Th/Sc and the standard values of chondrite. The results show that the protoliths of Wolengen Group may be a group of volcanoclastic and continental margin clastic rocks, and their tectonic setting is the continent island arc.
基金funded by Science and Technology Major Project of China National Offshore Oil Corporation(CNOOC-KJ 135 ZDXM36 TJ 08TJ).
文摘Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.
基金supported by National Natural Science Foundation of China (Grant Nos. 90814006, 40972135)Geological Survey of China (Grant No. 1212010510515)
文摘The early Precambrian high-grade metamorphosed basement in the Xi Ulanbulang area, central Inner Mongolia of China, is composed mainly of intermediate granulites and charnockitic gneisses. Both types of the rocks are closely associated spatially and temporally, with a gradual variation between them. In order to understand timing of the high-grade metamorphism, we carried out SHRIMP U-Pb dating of zircons of the rocks. Zircons from the granulites and charnockitic gneisses are similar in structure and age. Zircon cores show magmatic zoning and have ages of 2507-2545 Ma. The ages are interpreted as the forming time of protolith of the granulites and charnockitic gneisses, indicating that a strong magmatism existed at that time in the Yinshan Block. The zircon mantles and rims show homogeneous structures and record a strong granulite facies metamorphism event around 2500 Ma, with a time interval between the metamorphism and magamatism being less than 50 Ma. These suggest that the Western Block was similar to the Eastern Block in tectono-thermal timing at the end of the Neoarchean.
基金supported by the Special Fund for Basic Scientific Research of Central Colleges (No. CUG090106)the National Basic Research Program of China (No. 2003CB716500)
文摘The lithologies of the Chinese Continental Scientific Drilling main hole (CCSD-MH) are mainly comprised of orthogneiss,paragneiss,eclogite,amphibolite,and ultramafic rocks.The statistical results of logs of CCSD-MH indicate that ultramafic rocks are characterized by very high CNL (neutron log) and very low GR (gamma ray log) and RD (resistivity log);eclogites are characterized by high DEN (density),VP (P-wave velocity) and PE (photoelectric absorption capture cross section);orthogneiss and paragneiss are characterized by high GR,U (uranium content),Th (thorium content),K (potassium content) and RD,and low DEN,PE,and CNL;logging values of amphibolite are between the logging values of eclogites and paragneiss.In addition,the logs could reflect the degree of retrograde metamorphism of eclogites.The upper section (100-2 000 m) shows higher DEN,PE,VP,and lower GR,U,Th,K,RD than the lower section (2 000-5 000 m).Most logs of the upper section are more fluctuant than those of the lower section.This indicates that the upper section has more heterogeneities than the lower section.The cross plots of logs indicate that DEN,GR,K,and CNL are more powerful in identifying ultrahigh pressure metamorphic (UHPM) rocks at the CCSD-MH.GR value of the rocks from CCSD-MH shows obviously an increasing trend from ultramafic rock (the most mafic rocks at CCSD-MH) to orthogneiss (the most acid rocks at CCSD-MH).On the contrary,DEN value decreases from the ultramafic rock to the orthogneiss.CNL log is a good indicator of the content of structure water in crystalline rocks.
基金supported by the National Natural Science Foundation of China (No. 90714002)Special Project of Deep Probe Technology and Experimental Research of the Ministry of Land and Resources of China (No. SinoProbe-07-03)
文摘I found high Q values (Q-ratio=Jn/Ji, .In, Ji are remanent magnetization and induced magnetization) in the Sulu ultrahigh pressure (UHP) metamorphic rocks, eastern China which is the world's largest UHP metamorphic belt (Fig. 1 in Liu et al., 2009). Q values of 320 core samples with variable lithologies in the 100--2 000 m interval from the Chinese Continental Scientific Drilling (CCSD) main hole are as follows: values between 0.06 and 608.24, with an average of 15.56 for 171 eclogite samples;
基金The National Natural Science Foundation of. China (Grant No.40420120135 and 40472096) are thankefl for the fthancial support.
文摘Neoarchean metamorphic mafic rocks in the lower and the middle Wutai Complex mainly comprise metamorphic gabbros, amphibolites and chlorite schists. They can be subdivided into three groups according to chondrite normalized REE patterns. Rocks in Group #1 are characterized by nearly flat REE patterns (Lan/Ybn=0.86-1.3), the lowest total REEs (29-52 ppm), and weak negative to positive Eu anomalies (Eun/Eun=0.84-1.02), nearly flat primitive mantle normalized patterns and strong negative Zr(Hf) anomalies. Their geochemical characteristics in REEs and trace elements are similar to those of ocean plateau tholeiite, which imply that this group of rocks can represent remnants of Archean oceanic crust derived from a mantle plume. Rocks in Group #2 are characterized by moderate total REEs (34-116 ppm), LREE-enriched (Lan/Ybn=1.76-4.34) chondrite normalized REE patterns with weak Eu anomalies (Eun/Eun=0.76-1.16), and negative Nb, Ta, Zr(Hf), Ti anomalies in the primitive mantle normalized spider diagram. The REE and trace element characteristics indicate that they represent arc magmas originating from a sub-arc mantle wedge metasomatized by slab-derived fluids. Rocks in Group #3 are characterized by the highest total REEs (61-192 ppm), the strongest LREEs enrichment (Lan/Ybn=7.12-16) with slightly negative Eu anomalies (Eun/Eun=0.81-0.95) in the chondrite normalized diagram. In the primitive mantle normalized diagram, these rocks are characterized by large negative anomalies in Nb, Ta, Ti, negative to no Zr anomalies. They represent arc magmas originating from a sub-arc mantle wedge enriched in slab-derived melts. The three groups of rocks imply that the formation of the Neoarchean Wutai Complex is related to mantle plumes and island-arc interaction.
基金financially supported by the Ph.D Foundation of the Ministry of Education of China(grant No.20133402130008)the National Basic Research Program of China(grant No.2015CB856104)the National Natural Science Foundation of China(grant No.41273036)
文摘The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.