Phosphorus overenrichment of shallow ponds prevailing in wetlands leads to their eutrophication causing the collapse of those vulnerable habitats.The potential of phosphorus accumulation by periphyton developed on art...Phosphorus overenrichment of shallow ponds prevailing in wetlands leads to their eutrophication causing the collapse of those vulnerable habitats.The potential of phosphorus accumulation by periphyton developed on artificial substrata has been investigated in two shallow ponds(Bara?ka and?iroki Rit)in northwest Serbia and compared to the same ability of plankton and metaphyton.The periphyton substrate carrier has been submerged from May to October.Both continuously(CS)and monthly developed(MS)periphyton were sampled.Autotrophic component of all investigated communities has been qualitatively assessed.Maximum accumulation of only 14.7 mg TP/m^(2) was recorded in three-month exposed periphyton CS.MS exposed from July to August reached maximal 12.7 mg TP/m^(2).Plankton community that was characterized by more diverse and abundantly developed algal component was more effective in phosphorus accumulation(0.7 mg/g dry weight)in comparison with dominantly inorganic and diatom-dominated periphyton in Bara?ka.Unstable conditions caused by recent revitalization(dredging organic matter and mud from pond basin—redigging)as well as rapid desiccation of?iroki Rit disabled making an unambiguous conclusion about the efficiency of phosphorus accumulation among different communities,but suggested slight potential of phosphorus harvesting by metaphyton in this pond.Due to the shorter exposure time that brings the reduced risk of unpredictable changes in the ecosystem,as well as the considerable amount of accumulated phosphorus,large-scale application of one-month exposed periphyton developed on artificial substrates would be more advisable for phosphorus harvesting in nutrient affected shallow ponds.展开更多
Agmon is a small, shallow man-made lake (area: 1.1 km2;mean depth 0.45 m), excavated in the peat soils of the Hula Valley in northern Israel, that was filled with water in August 1994. We followed the seasonal variati...Agmon is a small, shallow man-made lake (area: 1.1 km2;mean depth 0.45 m), excavated in the peat soils of the Hula Valley in northern Israel, that was filled with water in August 1994. We followed the seasonal variations in phytoplankton and metaphyton biomass, primary production and related environmental conditions between December 1995 and July 1997. Water temperature ranged between 9.5°C - 30.8°C;pH ranged between 7.2 - 8.6. The algae in Lake Agmon were characterized by seasonal alterations between summer-fall phytoplankton blooms and spring proliferation of benthic algal mats, with a winter clear-water phase. Chlorophyll a content in the water, as a measure of planktonic algal biomass, was low in winter (1.75 - 5 μg·L-1) and high in summer (>100 μg·L-1), when planktonic cyanobacteria (Microcystis spp.) bloomed. Metaphyton biomass varied between 3.5 and 970 g·dry·wt·m-2, with chlorophyll a content ranging from 5 - 701 mg·m-2. The dominant benthic algal genera were Spirogyra and Oedogonium in 1996 and Cladophora in 1997. Phytoplankton primary production was high in summer-fall, with a maximum of 1200 mg·O2·m-2·h-1. Benthic primary production was high from March till May, with a peak of 2173 mg·O2·m-2·h-1 in April 1997. The rate of benthic algal primary production was positively correlated to benthic chlorophyll a (r2 = 0.90). Diel measurements of water column dissolved oxygen (DO) concentration, conducted monthly from January to May 1997, revealed that DO concentration ranged from a nighttime minimum of 5.3 to a noon peak of 15.3 mg·L-1. Only during January to February, no significant changes in DO with depth were found, suggesting that at that time the water column was well mixed. The most salient feature of primary production in the lake was the seasonal partitioning between its benthic and planktonic components. This was most evident in the significant inverse relationship between benthic and planktonic primary productivity rates (r2 = 0.78).展开更多
基金Supported by the Ministry of Science and Technological Development,Republic of Serbia,Projects(Nos.451-03-68/2020-14/200178,451-03-68/2020-14/200026)。
文摘Phosphorus overenrichment of shallow ponds prevailing in wetlands leads to their eutrophication causing the collapse of those vulnerable habitats.The potential of phosphorus accumulation by periphyton developed on artificial substrata has been investigated in two shallow ponds(Bara?ka and?iroki Rit)in northwest Serbia and compared to the same ability of plankton and metaphyton.The periphyton substrate carrier has been submerged from May to October.Both continuously(CS)and monthly developed(MS)periphyton were sampled.Autotrophic component of all investigated communities has been qualitatively assessed.Maximum accumulation of only 14.7 mg TP/m^(2) was recorded in three-month exposed periphyton CS.MS exposed from July to August reached maximal 12.7 mg TP/m^(2).Plankton community that was characterized by more diverse and abundantly developed algal component was more effective in phosphorus accumulation(0.7 mg/g dry weight)in comparison with dominantly inorganic and diatom-dominated periphyton in Bara?ka.Unstable conditions caused by recent revitalization(dredging organic matter and mud from pond basin—redigging)as well as rapid desiccation of?iroki Rit disabled making an unambiguous conclusion about the efficiency of phosphorus accumulation among different communities,but suggested slight potential of phosphorus harvesting by metaphyton in this pond.Due to the shorter exposure time that brings the reduced risk of unpredictable changes in the ecosystem,as well as the considerable amount of accumulated phosphorus,large-scale application of one-month exposed periphyton developed on artificial substrates would be more advisable for phosphorus harvesting in nutrient affected shallow ponds.
文摘Agmon is a small, shallow man-made lake (area: 1.1 km2;mean depth 0.45 m), excavated in the peat soils of the Hula Valley in northern Israel, that was filled with water in August 1994. We followed the seasonal variations in phytoplankton and metaphyton biomass, primary production and related environmental conditions between December 1995 and July 1997. Water temperature ranged between 9.5°C - 30.8°C;pH ranged between 7.2 - 8.6. The algae in Lake Agmon were characterized by seasonal alterations between summer-fall phytoplankton blooms and spring proliferation of benthic algal mats, with a winter clear-water phase. Chlorophyll a content in the water, as a measure of planktonic algal biomass, was low in winter (1.75 - 5 μg·L-1) and high in summer (>100 μg·L-1), when planktonic cyanobacteria (Microcystis spp.) bloomed. Metaphyton biomass varied between 3.5 and 970 g·dry·wt·m-2, with chlorophyll a content ranging from 5 - 701 mg·m-2. The dominant benthic algal genera were Spirogyra and Oedogonium in 1996 and Cladophora in 1997. Phytoplankton primary production was high in summer-fall, with a maximum of 1200 mg·O2·m-2·h-1. Benthic primary production was high from March till May, with a peak of 2173 mg·O2·m-2·h-1 in April 1997. The rate of benthic algal primary production was positively correlated to benthic chlorophyll a (r2 = 0.90). Diel measurements of water column dissolved oxygen (DO) concentration, conducted monthly from January to May 1997, revealed that DO concentration ranged from a nighttime minimum of 5.3 to a noon peak of 15.3 mg·L-1. Only during January to February, no significant changes in DO with depth were found, suggesting that at that time the water column was well mixed. The most salient feature of primary production in the lake was the seasonal partitioning between its benthic and planktonic components. This was most evident in the significant inverse relationship between benthic and planktonic primary productivity rates (r2 = 0.78).