This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings.By linking‘dots’of police data comprising scattered information of people,groups,logistics,location...This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings.By linking‘dots’of police data comprising scattered information of people,groups,logistics,locations,communication,and spatiotemporal characters on different social media groups,the proposed architecture will spawn beneficial information.This useful information will,in turn,help the police both in predicting potential terrorist events and in investigating previous events.Furthermore,this architecture will aid in the identification of criminals and their associates and handlers.Terrorism is psychological warfare,which,in the broadest sense,can be defined as the utilisation of deliberate violence for economic,political or religious purposes.In this study,a supervised learning-based approach was adopted to develop the proposed architecture.The dataset was prepared from the suicide bomb blast data of Pakistan obtained from the South Asia Terrorism Portal(SATP).As the proposed architecture was simulated,the supervised learning-based classifiers na飗e Bayes and Hoeffding Tree reached 72.17%accuracy.One of the additional benefits this study offers is the ability to predict the target audience of potential suicide bomb blasts,which may be used to eliminate future threats or,at least,minimise the number of casualties and other property losses.展开更多
The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduce...The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduced to extract damage-sensitive features from auto-regressive models.This approach sets out to improve current feature extraction techniques in the context of time series modeling.The coefficients and residuals of the AR model obtained from the proposed approach are selected as the main features and are applied to the proposed supervised learning classifiers that are categorized as coefficient-based and residual-based classifiers.These classifiers compute the relative errors in the extracted features between the undamaged and damaged states.Eventually,the abilities of the proposed methods to localize and quantify single and multiple damage scenarios are verified by applying experimental data for a laboratory frame and a four-story steel structure.Comparative analyses are performed to validate the superiority of the proposed methods over some existing techniques.Results show that the proposed classifiers,with the aid of extracted features from the proposed feature extraction approach,are able to locate and quantify damage;however,the residual-based classifiers yield better results than the coefficient-based classifiers.Moreover,these methods are superior to some classical techniques.展开更多
Drainage pattern recognition is crucial for geospatial understanding and hydrologic modelling.Currently,drainage pattern recognition methods employ geometric measures of overall and local features of river networks bu...Drainage pattern recognition is crucial for geospatial understanding and hydrologic modelling.Currently,drainage pattern recognition methods employ geometric measures of overall and local features of river networks but lack measures of river basin unit shape features,so that potential correlations between river segments are usually ignored,resulting in poor drainage pattern recognition results.In order to overcome this problem,this paper proposes a supervised graph neural network method that considers the local basin unit shape of river networks.First,based on the overall hierarchy of the river networks,the confluence angle of river segments and the shape of river basin units,multiple drainage pattern classification features are extracted.Then,typical drainage pattern samples from the multi-scale NSDI and USGS databases are used to complete the training,validation and testing steps.Experimental results show that the drainage pattern indexes proposed can describe the characteristics of different drainage patterns.The method can effectively sample the adjacent river segments,flexibly transfer the associated pattern features among river segment neighbours,and aggregate the deeper characteristics of the river networks,thus improving the drainage pattern recognition accuracy relative to other methods and reliably distinguishing different drainage patterns.展开更多
The traditional Gaussian Mixture Model (GMM) for pattern recognition is an unsupervised learning method. The parameters in the model are derived only by the training samples in one class without taking into account th...The traditional Gaussian Mixture Model (GMM) for pattern recognition is an unsupervised learning method. The parameters in the model are derived only by the training samples in one class without taking into account the effect of sample distributions of other classes, hence, its recognition accuracy is not ideal sometimes. This paper introduces an approach for estimating the parameters in GMM in a supervising way.The Supervised Learning Gaussian Mixture Model (SLGMM) improves the recognition accuracy of the GMM. An experimental example has shown its effectiveness. The experimental results have shown that the recognition accuracy derived by the approach is higher than those obtained by the Vector Quantization (VQ) approach, the Radial Basis Function (RBF) network model, the Learning Vector Quantization (LVQ) approach and the GMM. In addition, the training time of the approach is less than that of Multilayer Perceptron (MLP).展开更多
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label...In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance.展开更多
In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is appl...In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is applied to HCCR, and compact MLP network classifier is defined. Human intelligence and computer capabilities are combined together effectively through a procedure of two-step supervised learning. Compared with previous integration schemes, this scheme is characterized with parallel compact structure and better performance. It provides a promising way for applying MLP to large vocabulary classification.展开更多
流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分...流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分析的识别方法,该方法利用局部二元模式(Local binary pattern,LBP)对人脸图像进行局部特征描述,提取对局部变化不敏感的特征,然后使用有监督的核局部线性嵌入算法(Supervised kernel local linear embedding,SKLLE)对由局部特征构造的全局特征进行维数约简,提取低维鉴别流形特征进行人脸识别.该方法不仅对局部变化不敏感,而且将人脸表观流形和类别信息进行有效的结合,同时对新样本有较好的泛化性.实验结果表明该算法能有效的提高人脸识别的性能.展开更多
文摘This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings.By linking‘dots’of police data comprising scattered information of people,groups,logistics,locations,communication,and spatiotemporal characters on different social media groups,the proposed architecture will spawn beneficial information.This useful information will,in turn,help the police both in predicting potential terrorist events and in investigating previous events.Furthermore,this architecture will aid in the identification of criminals and their associates and handlers.Terrorism is psychological warfare,which,in the broadest sense,can be defined as the utilisation of deliberate violence for economic,political or religious purposes.In this study,a supervised learning-based approach was adopted to develop the proposed architecture.The dataset was prepared from the suicide bomb blast data of Pakistan obtained from the South Asia Terrorism Portal(SATP).As the proposed architecture was simulated,the supervised learning-based classifiers na飗e Bayes and Hoeffding Tree reached 72.17%accuracy.One of the additional benefits this study offers is the ability to predict the target audience of potential suicide bomb blasts,which may be used to eliminate future threats or,at least,minimise the number of casualties and other property losses.
文摘The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduced to extract damage-sensitive features from auto-regressive models.This approach sets out to improve current feature extraction techniques in the context of time series modeling.The coefficients and residuals of the AR model obtained from the proposed approach are selected as the main features and are applied to the proposed supervised learning classifiers that are categorized as coefficient-based and residual-based classifiers.These classifiers compute the relative errors in the extracted features between the undamaged and damaged states.Eventually,the abilities of the proposed methods to localize and quantify single and multiple damage scenarios are verified by applying experimental data for a laboratory frame and a four-story steel structure.Comparative analyses are performed to validate the superiority of the proposed methods over some existing techniques.Results show that the proposed classifiers,with the aid of extracted features from the proposed feature extraction approach,are able to locate and quantify damage;however,the residual-based classifiers yield better results than the coefficient-based classifiers.Moreover,these methods are superior to some classical techniques.
基金supported by the National Natural Science Foundation of China[grant number 41930101,42161066,42261076]State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR,CASM[grant number 2022-03-03]+2 种基金Major Project for Science and Technology of Gansu Province[grant number 22ZD6GA010]Youth Science and Technology Foundation of Gansu Province[grant number 22JR11RA140]Young Scholars Science Foundation of Lanzhou Jiaotong University[grant number 2022007].
文摘Drainage pattern recognition is crucial for geospatial understanding and hydrologic modelling.Currently,drainage pattern recognition methods employ geometric measures of overall and local features of river networks but lack measures of river basin unit shape features,so that potential correlations between river segments are usually ignored,resulting in poor drainage pattern recognition results.In order to overcome this problem,this paper proposes a supervised graph neural network method that considers the local basin unit shape of river networks.First,based on the overall hierarchy of the river networks,the confluence angle of river segments and the shape of river basin units,multiple drainage pattern classification features are extracted.Then,typical drainage pattern samples from the multi-scale NSDI and USGS databases are used to complete the training,validation and testing steps.Experimental results show that the drainage pattern indexes proposed can describe the characteristics of different drainage patterns.The method can effectively sample the adjacent river segments,flexibly transfer the associated pattern features among river segment neighbours,and aggregate the deeper characteristics of the river networks,thus improving the drainage pattern recognition accuracy relative to other methods and reliably distinguishing different drainage patterns.
文摘The traditional Gaussian Mixture Model (GMM) for pattern recognition is an unsupervised learning method. The parameters in the model are derived only by the training samples in one class without taking into account the effect of sample distributions of other classes, hence, its recognition accuracy is not ideal sometimes. This paper introduces an approach for estimating the parameters in GMM in a supervising way.The Supervised Learning Gaussian Mixture Model (SLGMM) improves the recognition accuracy of the GMM. An experimental example has shown its effectiveness. The experimental results have shown that the recognition accuracy derived by the approach is higher than those obtained by the Vector Quantization (VQ) approach, the Radial Basis Function (RBF) network model, the Learning Vector Quantization (LVQ) approach and the GMM. In addition, the training time of the approach is less than that of Multilayer Perceptron (MLP).
基金supported by the National Natural Science of China(6057407560705004).
文摘In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance.
文摘In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is applied to HCCR, and compact MLP network classifier is defined. Human intelligence and computer capabilities are combined together effectively through a procedure of two-step supervised learning. Compared with previous integration schemes, this scheme is characterized with parallel compact structure and better performance. It provides a promising way for applying MLP to large vocabulary classification.
文摘流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分析的识别方法,该方法利用局部二元模式(Local binary pattern,LBP)对人脸图像进行局部特征描述,提取对局部变化不敏感的特征,然后使用有监督的核局部线性嵌入算法(Supervised kernel local linear embedding,SKLLE)对由局部特征构造的全局特征进行维数约简,提取低维鉴别流形特征进行人脸识别.该方法不仅对局部变化不敏感,而且将人脸表观流形和类别信息进行有效的结合,同时对新样本有较好的泛化性.实验结果表明该算法能有效的提高人脸识别的性能.