期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhanced production of hydrogen via catalytic methane decomposition on a Pt_(7)-Ni(110)substrate:a reactive molecular dynamics investigation
1
作者 Rizal Arifin Zulkarnain +3 位作者 Abdurrouf Yoyok Winardi Didik Riyanto Darminto 《Clean Energy》 EI CSCD 2024年第2期168-176,共9页
Numerous researchers in the energy field are engaged in a competitive race to advance hydrogen as a clean and environmentally friendly fuel.Studies have been conducted on the different aspects of hydrogen,including it... Numerous researchers in the energy field are engaged in a competitive race to advance hydrogen as a clean and environmentally friendly fuel.Studies have been conducted on the different aspects of hydrogen,including its production,storage,transportation and utilization.The catalytic methane decomposition technique for hydrogen production is an environmentally friendly process that avoids generating carbon dioxide gas,which contributes to the greenhouse effect.Catalysts play a crucial role in facilitating rapid,cost-effective and efficient production of hydrogen using this technique.In this study,reactive molecular dynamics simulations were employed to examine the impact of Pt7 cluster decoration on the surface of a Ni(110)catalyst,referred to as Pt7-Ni(110),on the rates of methane dissociation and molecular hydrogen production.The reactive force field was employed to model the atomic interactions that enabled the formation and dissociation of chemical bonds.Our reactive molecular dynamics simulations using the Pt7-Ni(110)catalyst revealed a notable decrease in the number of methane molecules,specifically~11.89 molecules per picosecond.The rate was approximately four times higher than that of the simulation system utilizing a Ni(110)catalyst and approximately six times higher than that of the pure methane,no-catalyst system.The number of hydrogen molecules generated during a simulation period of 150000 fs was greater on the Pt7-Ni(110)surface than in both the Ni(110)and pure methane systems.This was due to the presence of numerous dissociated hydrogen atoms on the Pt7-Ni(110)surface. 展开更多
关键词 hydrogen production catalytic methane decomposition reactive molecular dynamics Pt7 cluster Ni(110)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部