期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
Saturation Estimation with Complex Electrical Conductivity for Hydrate-Bearing Clayey Sediments:An Experimental Study 被引量:1
1
作者 XING Lanchang ZHANG Shuli +8 位作者 ZHANG Huanhuan WU Chenyutong WANG Bin LAO Liyun WEI Wei HAN Weifeng WEI Zhoutuo GE Xinmin DENG Shaogui 《Journal of Ocean University of China》 CAS CSCD 2024年第1期173-189,共17页
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S... Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively. 展开更多
关键词 gas hydrate complex electrical conductivity hydrate-bearing clayey sediment hydrate saturation Simandoux equation frequency dispersion Cole-Cole formula
下载PDF
Intrinsic correlation between the generalized phase equilibrium condition and mechanical behaviors in hydrate-bearing sediments
2
作者 Jiazuo Zhou Changfu Wei +2 位作者 Rongtao Yan Yuan Zhou Yi Dong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2822-2832,共11页
The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing ... The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves. 展开更多
关键词 hydrate-bearing sediment Generalized phase equilibrium Unhydrated water Partial dissociation Mechanical behavior
下载PDF
Drucker-Prager Elasto-Plastic Constitutive Model for Methane Hydrate-Bearing Sediment 被引量:2
3
作者 Sun Xiang Guo Xiaoxia +1 位作者 Shao Longtan Li Yanghui 《Transactions of Tianjin University》 EI CAS 2016年第5期441-450,共10页
A constitutive model for methane hydrate-bearing sediment(MHBS)is essential for the analysis of mechanical response of MHBS to the change of hydrate saturation caused by gas extraction. A new elasto-plastic constituti... A constitutive model for methane hydrate-bearing sediment(MHBS)is essential for the analysis of mechanical response of MHBS to the change of hydrate saturation caused by gas extraction. A new elasto-plastic constitutive model is built in order to simulate the mechanical behavior of MHBS in this paper. This model represents more significant mechanical properties of MHBS such as bonding, higher stiffness, softening and stress-strain nonlinear relationship. The bonding behavior can be described by use of a parameter related to mechanical hydrate saturation. Higher stiffness can be modeled by the introduction of hydrate saturation into traditional expression of soil stiffness. Softening can be controlled by a function describing the relationship between cohesion and bonding structure factor. Dilatancy can be estimated by establishing the relationship between the lateral strain and axial strain. Meanwhile, the hypothesis of isotropic expanding is applied to the calculation of the volumetric strain. The stress-strain curves under different hydrate saturation conditions predicted by the proposed model are in good agreement with the test data. All the coefficients can be easily obtained by the triaxial test of MHBS. 展开更多
关键词 CONSTITUTIVE model methane hydrate-bearing sediment yield surface bonding
下载PDF
Thermal conductivity of hydrate and effective thermal conductivity of hydrate-bearing sediment
4
作者 Cunning Wang Xingxun Li +2 位作者 Qingping Li Guangjin Chen Changyu Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期176-188,共13页
The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The th... The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The thermal conductivity of hydrate is of great significance for the hydrate-related field,such as the natural gas hydrate exploitation and prevention of the hydrate plugging in oil or gas pipelines.In order to obtain a comprehensive understanding of the research progress of the hydrate thermal conductivity and the ETC of hydrate-bearing sediment,the literature on the studies of the thermal conductivity of hydrate and the ETC of hydrate-bearing sediment were summarized and reviewed in this study.Firstly,experimental studies of the reported measured values and the temperature dependence of the thermal conductivity of hydrate were discussed and reviewed.Secondly,the studies of the experimental measurements of the ETC of hydrate-bearing sediment and the effects of temperature,porosity,hydrate saturation,water saturation,thermal conductivity of porous medium,phase change,and other factors on the ETC of hydrate-bearing sediment were discussed and reviewed.Thirdly,the research progress of modeling on the ETC of the hydrate-bearing sediment was reviewed.The thermal conductivity determines the heat transfer capacity of the hydrate reservoir and directly affects the hydrate exploitation efficiency.Future efforts need to be devoted to obtain experimental data of the ETC of hydrate reservoirs and establish models to accurately predict the ETC of hydrate-bearing sediment. 展开更多
关键词 HYDRATE Thermal conductivity hydrate-bearing sediment Preparation method Effective thermal conductivity MODEL
下载PDF
Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation 被引量:10
5
作者 X.H.Zhang D.S.Luo +2 位作者 X.B.Lu L.L.Liu C.L.Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期266-274,共9页
The changes in the mechanical properties of gas hydrate-bearing sediments(GHBS) induced by gas hydrate(GH) dissociation are essential to the evaluation of GH exploration and stratum instabilities. Previous studies pre... The changes in the mechanical properties of gas hydrate-bearing sediments(GHBS) induced by gas hydrate(GH) dissociation are essential to the evaluation of GH exploration and stratum instabilities. Previous studies present substantial mechanical data and constitutive models for GHBS at a given GH saturation under the non-dissociated condition. In this paper, GHBS was formed by the gas saturated method, GH was dissociated by depressurization until the GH saturation reached different dissociation degrees. The stress–strain curves were measured using triaxial tests at a same pore gas pressure and different confining pressures. The results show that the shear strength decreases progressively by 30%–90% of the initial value with GH dissociation, and the modulus decreases by 50% –75%. Simplified relationships for the modulus, cohesion, and internal friction angle with GH dissociated saturation were presented. 展开更多
关键词 Gas hydrate-bearing sediments DISSOCIATION Mechanical properties Shear strength Triaxial test
下载PDF
Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments 被引量:1
6
作者 Lin Liu Xiu-Mei Zhang Xiu-Ming Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期344-354,共11页
Based on Carcione-Leclaire model,the time-splitting high-order staggered-grid finite-difference algorithm is proposed and constructed for understanding wave propagation mechanisms in gas hydrate-bearing sediments.Thre... Based on Carcione-Leclaire model,the time-splitting high-order staggered-grid finite-difference algorithm is proposed and constructed for understanding wave propagation mechanisms in gas hydrate-bearing sediments.Three compressional waves and two shear waves,as well as their energy distributions are investigated in detail.In particular,the influences of the friction coefficient between solid grains and gas hydrate and the viscosity of pore fluid on wave propagation are analyzed.The results show that our proposed numerical simulation algorithm proposed in this paper can effectively solve the problem of stiffness in the velocity-stress equations and suppress the grid dispersion,resulting in higher accuracy compared with the result of the Fourier pseudospectral method used by Carcione.The excitation mechanisms of the five wave modes are clearly revealed by the results of simulations.Besides,it is pointed that,the wave diffusion of the second kind of compressional and shear waves is influenced by the friction coefficient between solid grains and gas hydrate,while the diffusion of the third compressional wave is controlled by the fluid viscosity.Finally,two fluid-solid(gas-hydrate formation)models are constructed to study the mode conversion of various waves.The results show that the reflection,transmission,and transformation of various waves occur on the interface,forming a very complicated wave field,and the energy distribution of various converted waves in different phases is different.It is demonstrated from our studies that,the unconventional waves,such as the second and third kinds of compressional waves may be converted into conventional waves on an interface.These propagation mechanisms provide a concrete wave attenuation explanation in inhomogeneous media. 展开更多
关键词 gas hydrate-bearing sediments Carcione-Leclaire model time-splitting staggered-grid finite-difference slow-wave characteristics
下载PDF
Deposition processes of gas hydrate-bearing sediments in the inter-canyon area of Shenhu Area in the northern South China Sea
7
作者 Zhixuan LIN Ming SU +5 位作者 Haiteng ZHUO Pibo SU Jinqiang LIANG Feifei WANG Chengzhi YANG Kunwen LUO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期740-756,共17页
The Shenhu Submarine Canyon Group on the northern slope of the South China Sea consists of 17 slope-confined canyons,providing a good example for investigating their hosting sediments.Three drilling sites,including W0... The Shenhu Submarine Canyon Group on the northern slope of the South China Sea consists of 17 slope-confined canyons,providing a good example for investigating their hosting sediments.Three drilling sites,including W07,W18,and W19,have proven the occurrence of gas hydrate reservoirs in the inter-canyon area between canyons C11 and C12.Whereas,variations of the geomorphology and seismic facies analyzed by high-resolution 3D seismic data indicate that the gas hydrate-bearing sediments may form in different sedimentary processes.In the upper segment,a set of small-scale channels with obvious topographic lows can be identified,revealing fine-grained turbidites supplied from the shelf region during a very short-term sea-level lowstand.In the middle part,gas hydrate units at Site W07 showing mounded or undulation external configuration are interpreted as sliding sedimentary features,and those features caused by gravity destabilization were the main formative mechanism of gas hydrate-bearing sediments that were sourced from the upper segments.In contrast,for the canyon transition zone of lower segments between C11-C12 inter-canyon and C12 intra-canyon areas,where W18 and W19 sites are located,the gas hydratebearing sediments are deposited in the channelized feature in the middle to lower segment and slide erosive surface.Gas hydrate-bearing sediments of the lower segment were migrated through channelized features interconnecting with the middle to lower slope by gravity-driven flows.The majority of deposits tended to be furtherly moved by lateral migration via erosive surface created by sediment failed to intra-canyon area.The conclusion of this study may help better understand the interaction between the formation mechanism of gas hydrate-bearing sediments and the geomorphologic effects of inter-canyon areas. 展开更多
关键词 submarine canyons gas hydrate-bearing sediments seismic geomorphology inter-canyon transport process
下载PDF
Identification of functionally active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area,South China Sea
8
作者 Jing Li Chang-ling Liu +4 位作者 Neng-you Wu Xiao-qing Xu Gao-wei Hu Yan-long Li Qing-guo Meng 《China Geology》 2022年第2期285-292,共8页
Large amounts of gas hydrate are distributed in the northern slope of the South China Sea,which is a potential threat of methane leakage.Aerobic methane oxidation by methanotrophs,significant methane biotransformation... Large amounts of gas hydrate are distributed in the northern slope of the South China Sea,which is a potential threat of methane leakage.Aerobic methane oxidation by methanotrophs,significant methane biotransformation that occurs in sediment surface and water column,can effectively reduce atmospheric emission of hydrate-decomposed methane.To identify active aerobic methanotrophs and their methane oxidation potential in sediments from the Shenhu Area in the South China Sea,multi-day enrichment incubations were conducted in this study.The results show that the methane oxidation rates in the studied sediments were 2.03‒2.36μmol/gdw/d,which were higher than those obtained by sediment incubations from other areas in marine ecosystems.Thus the authors suspect that the methane oxidation potential of methanotrophs was relatively higher in sediments from the Shenhu Area.After the incubations family Methylococcaea(type I methanotrophs)mainly consisted of genus Methylobacter and Methylococcaea_Other were predominant with an increased proportion of 70.3%,whereas Methylocaldum decreased simultaneously in the incubated sediments.Collectively,this study may help to gain a better understanding of the methane biotransformation in the Shenhu Area. 展开更多
关键词 Active methanotrophs Aerobic methane oxidation Marine sediments Natural gas hydrates NGHs exploration trial engineering Oil and gas exploration engineering Shenhu Area South China Sea
下载PDF
P-T stability conditions of methane hydrate in sediment from South China Sea 被引量:2
9
作者 Shicai Sun Yuguang Ye +2 位作者 Changling Liu Fengkui Xiang Yan Ma 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第5期531-536,共6页
For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and se... For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions. 展开更多
关键词 sediment from South China Sea seafloor water methane hydrate stability condition
下载PDF
The influence of temperature,pressure,salinity and capillary force on the formation of methane hydrate 被引量:3
10
作者 Zhenhao Duan Ding Li +1 位作者 Yali Chen Rui Sun 《Geoscience Frontiers》 SCIE CAS 2011年第2期125-135,共11页
We present here a thermodynamic model for predicting multi-phase equilibrium of methane hydrate liquid and vapor phases under conditions of different temperature, pressure, salinity and pore sizes. The model is based ... We present here a thermodynamic model for predicting multi-phase equilibrium of methane hydrate liquid and vapor phases under conditions of different temperature, pressure, salinity and pore sizes. The model is based on the 1959 van der Waals--Platteeuw model, angle-dependent ab initio intermolecular potentials, the DMW-92 equation of state and Pitzer theory. Comparison with all available experimental data shows that this model can accurately predict the effects of temperature, pressure, salinity and capillary radius on the formation and dissociation of methane hydrate. Online calculations of the p-T conditions for the formation of methane hydrate at given salinities and pore sizes of sediments are available on: www.geochem-model.org/models.htm. 展开更多
关键词 methane hydrate ab initio potential SALINITY Porous sediment Forming conditions Phase equilibria
下载PDF
A comprehensive analysis of formation conditions,intrinsic properties,and mechanical responses of gas hydrate-bearing sediments
11
作者 Hualin Zhang Hanbing Bian +1 位作者 Shuangxing Qi Jijing Wang 《Rock Mechanics Bulletin》 2024年第2期39-62,共24页
Natural gas hydrates(NGH)stored in submarine deposits are a promising energy resource,Yet,the deterioration in sediment strength can trigger geological disasters due to drilling-induced hydrate dissociation.Hence,an i... Natural gas hydrates(NGH)stored in submarine deposits are a promising energy resource,Yet,the deterioration in sediment strength can trigger geological disasters due to drilling-induced hydrate dissociation.Hence,an in-depth investigation on geo physical-mechanical performance of gas hydrate-bearing sediments(GHBS)is crucial for recovery hydrates safely and efficiently.This paper provides a comprehensive assessment of the research progress on formation conditions,intrinsic properties,and mechanical responses of GHBS.The key findings have been presented:gas composition,inhibitors and promoters alter hydrate formation by modifying the thermodynamic equilibrium of temperature and pressure.Also,we identified the key determinants of porosity of GHBS and revealed the correlation between permeability,hydrate saturation,and hydrate morphology.Moreover,we highlighted the differences in mechanical behavior between hydrate-free sediments and GHBS along with their underlying mechanisms.Furthermore,we examined the methods for GHBS preparation as well as the employed test apparatuses,providing critical insights into the limitations and recommendations.By synthe-sizing data from existing literature,we conducted a comprehensive analysis of the dependence of mechanical parameters of GHBS on factors such as hydrate saturation,effective confining stress,and temperature,and dis-cussed the mechanical responses subjected to various hydrate dissociation methods.Finally,we offer a perspective for future research to focus on the micro-scale aspects,heterogeneous distribution,and long-term stability of GHBS.The discerned patterns and mechanical mechanisms are expected to guide the improvement of predictive model for geo physical-mechanical behavior of GHBS and establish a reference for developing effective strategies for recovery hydrates. 展开更多
关键词 Gas hydrate-bearing sediments Hydrate formation and dissociation Hydrate morphology Geo physical-mechanical performance Recovery hydrates
原文传递
Three-dimensional DEM investigation of the stress-dilatancy relation of grain-cementing type methane hydrate-bearing sediment
12
作者 An Zhang Mingjing Jiang Wenhao Du 《Petroleum》 CSCD 2021年第4期477-484,共8页
In this study,the Discrete Element Method(DEM)was employed to investigate numerically the effects of hydrate cementation and intermediate principal stress on the stress-dilatancy relation of graincementing type methan... In this study,the Discrete Element Method(DEM)was employed to investigate numerically the effects of hydrate cementation and intermediate principal stress on the stress-dilatancy relation of graincementing type methane hydrate-bearing sediment(MHBS)by conducting a series of conventional and true triaxial tests.A novel 3D thermo-hydro-mechanical-chemical(THMC)contact model for MHBS was employed.The numerical results show that with increasing hydrate saturation and back pressure,or decreasing confining pressure,temperature and salinity,the stress-dilation relation of grain-cementing type MHBS evolves from dilation-dominant to bond-dominant.For the clean sand samples,the relationship between the normalized stress ratio h/Mcr and the dilatancy rate d is close under different intermediate principal stress coefficients.However,for the MHBS samples,this relationship is still affected by the intermediate principal stress coefficient b,due to the effect of hydrate cementation. 展开更多
关键词 Stress-dilatancy CEMENTATION methane hydrate bearing sediment Discrete element method Intermediate principal stress
原文传递
Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island (Pearl River Estuary), southern China 被引量:4
13
作者 WU Zijun ZHOU Huaiyang +1 位作者 PENG Xiaotong CHEN Guangqian 《Chinese Science Bulletin》 SCIE EI CAS 2006年第16期2006-2015,共10页
The concentrations of CH4 and SO42? in pore-water and the carbon isotope compositions of total dissolved inorganic (ΣCO2) and CH4 were de- termined for three coastal sedimentary cores col- lected from Qi’ao Island (... The concentrations of CH4 and SO42? in pore-water and the carbon isotope compositions of total dissolved inorganic (ΣCO2) and CH4 were de- termined for three coastal sedimentary cores col- lected from Qi’ao Island (Pearl River Estuary), southern China. Results show that methane concen- tration changes dramatically at the base of the sul- fate-reducing zone and sulfate concentration gradi- ents are linear for all stations. In addition, the carbon isotope of methane becomes heavier at the sul- fate-methane transition (SMT), which causes ΣCO2-δ 13C to become the minimum. The geo- chemical profiles of pore-water render indirect evi- dence for anaerobic oxidation of methane (AOM). Based on numerical modeling of AOM and sul- fate-reducing rates, the portion of total sulfate reduc- tion occurring via AOM is 9.0%, 84% and 45.5%, re- spectively, and the percentage of ΣCO2 added to the pore-water is 4.7%, 72.4% and 29.45% correspond- ingly for three sites. Furthermore, it is found that the methane concentration, methane diffusive flux and the depth of SMT are controlled by the quantity and quality of sedimentary organic matter incorporated into the sediments. The great amount of organic material is favorable for rapid depletion of sulfate via sedimentary organic matter degradation, and on the other hand, causes the increase of the methane flux in the SMT, which results in a portion of sulfate re-duction supported by AOM. Accordingly, the SMT was shifted towards the sediment surface. 展开更多
关键词 缺氧氧化 甲烷 硫酸盐 沉积 珠江河口 地球化学
原文传递
Simulation experiments on gas production from hydrate-bearing sediments
14
作者 GONG JianMing CAO ZhiMin +3 位作者 CHEN JianWen ZHANG Min LI Jin YANG GuiFang 《Science China Earth Sciences》 SCIE EI CAS 2009年第1期22-28,共7页
Experiments were made on 58 sediment samples from four sites (1244, 1245, 1250 and 1251) of ODP204 at five temperature points (25, 35, 45, 55 and 65°C) to simulate methane production from hydrate-bearing sediment... Experiments were made on 58 sediment samples from four sites (1244, 1245, 1250 and 1251) of ODP204 at five temperature points (25, 35, 45, 55 and 65°C) to simulate methane production from hydrate-bearing sediments. Simulation results from site 1244 show that the gas components consist mainly of methane and carbon dioxide, and heavy hydrocarbons more than C2 + cannot be detected. This site also gives results, similar to those from the other three, that the methane production is controlled by experimental temperatures, generally reaching the maximum gas yields per gram sediment or TOC under lower temperatures (25 and 35°C). In other words, the methane amount could be related to the buried depth of sediments, given the close relation between the depth and temperature. Sediments less than 1200 m below seafloor are inferred to still act as a biogenic gas producer to pour methane into the present hydrate zone, while sedimentary layers more than 1200 m below seafloor have become too biogenically exhausted to offer any biogas, but instead they produce thermogenic gas to give additional supply to the hydrate formation in the study area. 展开更多
关键词 GAS production simulation EXPERIMENT hydrate-bearing sediments ODP204
原文传递
Metal-dependent anaerobic methane oxidation in marine sediment:insights from marine settings and other systems 被引量:7
15
作者 Lewen Liang Yinzhao Wang +1 位作者 Orit Sivan Fengping Wang 《Science China(Life Sciences)》 SCIE CAS CSCD 2019年第10期1287-1295,共9页
Anaerobic oxidation of methane(AOM) plays a crucial role in controlling global methane emission. This is a microbial process that relies on the reduction of external electron acceptors such as sulfate, nitrate/nitrite... Anaerobic oxidation of methane(AOM) plays a crucial role in controlling global methane emission. This is a microbial process that relies on the reduction of external electron acceptors such as sulfate, nitrate/nitrite, and transient metal ions. In marine settings, the dominant electron acceptor for AOM is sulfate, while other known electron acceptors are transient metal ions such as iron and manganese oxides. Despite the AOM process coupled with sulfate reduction being relatively well characterized,researches on metal-dependent AOM process are few, and no microorganism has to date been identified as being responsible for this reaction in natural marine environments. In this review, geochemical evidences of metal-dependent AOM from sediment cores in various marine environments are summarized. Studies have showed that iron and manganese are reduced in accordance with methane oxidation in seeps or diffusive profiles below the methanogenesis zone. The potential biochemical basis and mechanisms for metal-dependent AOM processes are here presented and discussed. Future research will shed light on the microbes involved in this process and also on the molecular basis of the electron transfer between these microbes and metals in natural marine environments. 展开更多
关键词 ANAEROBIC methane oxidation metal-AOM MARINE sediment ARCHAEA electron transfer
原文传递
Analysis of physical properties of gas hydrate-bearing unconsolidated sediment samples from the ultra-deepwater area in the South China Sea 被引量:1
16
作者 Xin Lyu Qingping Li +5 位作者 Yang Ge Min Ouyang Hexing Liu Qiang Fu Junlong Zhu Shouwei Zhou 《Frontiers in Energy》 SCIE CSCD 2022年第3期509-520,共12页
Marine natural gas hydrate has recently attracted global attention as a potential new clean energy source. Laboratory measurements of various physical properties of gas hydrate-bearing marine sediments can provide val... Marine natural gas hydrate has recently attracted global attention as a potential new clean energy source. Laboratory measurements of various physical properties of gas hydrate-bearing marine sediments can provide valuable information for developing efficient and safe extraction technology of natural gas hydrates. This study presents comprehensive measurement results and analysis of drilled hydrate-bearing sediments samples recovered from Qiongdongnan Basin in the South China Sea. The results show that the gas hydrate in the core samples is mainly methane hydrate with a methane content of approximately 95%, and the other components are ethane and carbon dioxide. The saturation of the samples fluctuates from 2%–60%, the porosity is approximately 38%–43%, and the water content is approximately 30%–50%, which indicate that high water saturation means that timely drainage should be paid attention to during hydrate extraction. In addition, the median diameter of the sediment samples is mainly distributed in the range of 15 to 34 µm, and attention should be paid to the prevention and control of sand production in the mining process. Moreover, the thermal conductivity is distributed in the range of 0.75 to 0.96 W/(m·K) as measured by the flat plate heat source method. The relatively low thermal conductivity of hydrates at this study site indicates that a combined approach is encouraged for natural gas production technologies. It is also found that clay flakes and fine particles are attached to the surface of large particles in large numbers. Such characteristics will lead to insufficient permeability during the production process. 展开更多
关键词 natural gas hydrates physical properties analysis hydrate-bearing sediments
原文传递
注乙二醇溶液分解甲烷水合物的实验研究 被引量:25
17
作者 李刚 李小森 +3 位作者 唐良广 张郁 冯自平 樊栓狮 《化工学报》 EI CAS CSCD 北大核心 2007年第8期2067-2074,共8页
在甲烷水合物一维分解模拟系统上,进行了模拟注乙二醇溶液分解甲烷水合物的实验研究。使用甲烷气体与纯水在一定温度、压力条件下,在沉积物中合成水合物。通过以不同速率注入不同浓度的乙二醇溶液,研究了化学法分解水合物过程中甲烷气... 在甲烷水合物一维分解模拟系统上,进行了模拟注乙二醇溶液分解甲烷水合物的实验研究。使用甲烷气体与纯水在一定温度、压力条件下,在沉积物中合成水合物。通过以不同速率注入不同浓度的乙二醇溶液,研究了化学法分解水合物过程中甲烷气体和水生产规律。实验结果表明,水合物分解产出甲烷气体的过程主要分为4个阶段:初始注入段、化学剂稀释段、水合物分解段和残余气体产出段。整个分解过程中,水的生产速率几乎保持恒定。通过对实验结果的能量分析表明,本实验条件下分解综合效率在0.20~0.88之间,并且受注入速率和化学剂浓度影响。在恒定注入速率条件下,分解效率在化学剂质量分数为60%时达到最大值。 展开更多
关键词 甲烷水合物 乙二醇 沉积物
下载PDF
降温模式对甲烷水合物形成的影响 被引量:16
18
作者 李刚 李小森 +3 位作者 唐良广 冯自平 樊栓狮 张郁 《过程工程学报》 EI CAS CSCD 北大核心 2007年第4期723-727,共5页
在定容条件下,以两种不同的降温模式(缓慢降温和快速降温)进行甲烷水合物在沉积物中的形成实验.结果表明,甲烷水合物在沉积物中的形成过程包括气液溶解、核化、生长、稳定4个阶段.在相同的初始条件下,降温模式对水合物生成的热力平衡影... 在定容条件下,以两种不同的降温模式(缓慢降温和快速降温)进行甲烷水合物在沉积物中的形成实验.结果表明,甲烷水合物在沉积物中的形成过程包括气液溶解、核化、生长、稳定4个阶段.在相同的初始条件下,降温模式对水合物生成的热力平衡影响较小,但对水合物生成动力学有显著改变.快速降温下水合物生长速度明显快于缓慢降温,随着水合物初始条件不同,缓慢降温比快速降温水合物形成时间约增加21.4%~28.8%. 展开更多
关键词 甲烷水合物 沉积物 定容形成 降温模式
下载PDF
南海北部冷泉区沉积物中微生物丰度与甲烷浓度变化关系的初步研究 被引量:21
19
作者 苏新 陈芳 +4 位作者 魏士平 张勇 程思海 陆红锋 黄永样 《现代地质》 CAS CSCD 北大核心 2007年第1期101-104,共4页
对2006年“海洋四号”在南海北部陆坡和深水冷泉活动区获得的两个重力活塞岩心中微生物丰度变化和甲烷浓度变化的关系进行了初步研究。荧光显微镜观察和直接计数结果表明,研究区冷泉微生物细胞形态有多种类型,但常见和占优势的是杆状、... 对2006年“海洋四号”在南海北部陆坡和深水冷泉活动区获得的两个重力活塞岩心中微生物丰度变化和甲烷浓度变化的关系进行了初步研究。荧光显微镜观察和直接计数结果表明,研究区冷泉微生物细胞形态有多种类型,但常见和占优势的是杆状、球状和链状。微生物丰度随不同站位和深度变化于106-105细胞个体/g之间。甲烷浓度高异常站位的微生物丰度大于甲烷浓度低的站位。在同一岩心中,微生物的丰度变化也和甲烷浓度变化相吻合,甲烷浓度高,微生物丰度大,反之亦然。该结果表明了冷泉微生物对沉积物中甲烷浓度的增加或减少十分敏感。 展开更多
关键词 微生物丰度 甲烷浓度 沉积物 冷泉 中国南海
下载PDF
一个深海能源土弹塑性本构模型 被引量:13
20
作者 蒋明镜 刘俊 +1 位作者 周卫 奚邦禄 《岩土力学》 EI CAS CSCD 北大核心 2018年第4期1153-1158,共6页
天然气水合物赋存在低温高压环境中,会在土颗粒间形成胶结从而增大深海能源土抗剪强度。基于损伤力学理论,将结构性砂土本构模型推广应用于深海能源土分析中,模拟计算了三轴固结排水剪切试验,再根据应力-应变曲线关系定量反演初始屈服... 天然气水合物赋存在低温高压环境中,会在土颗粒间形成胶结从而增大深海能源土抗剪强度。基于损伤力学理论,将结构性砂土本构模型推广应用于深海能源土分析中,模拟计算了三轴固结排水剪切试验,再根据应力-应变曲线关系定量反演初始屈服系数与水合物饱和度之间的函数关系,并修正了原有的结构性砂土破损规律,建立了深海能源土弹塑性本构模型。另外,根据该模型模拟了另外一组深海能源土三轴剪切试验和等向固结压缩试验。计算结果表明:新建立的深海能源土本构模型可以有效模拟深海能源土剪切强度随水合物饱和度之间的增长关系;随着水合物饱和度的增加,三轴压缩试验中深海能源土峰值强度及割线模量(E_(50))逐渐增加,等向固结压缩试验中屈服强度增加,与试验结果有较好的一致性,表明了该模型的合理性。 展开更多
关键词 深海能源土 本构模型 水合物饱和度
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部