Using first-principles methods, we have systematically investigated the electronic density of states, work function, and adsorption energy of the methane molecule adsorbed on graphite(0001) films. The surface energy...Using first-principles methods, we have systematically investigated the electronic density of states, work function, and adsorption energy of the methane molecule adsorbed on graphite(0001) films. The surface energy and the interlayer relaxation of the clean graphite(0001) as a function of the thickness of the film were also studied. The results show that the interlayer relaxation is small due to the weak interaction between the neighboring layers. The one-fold top site is found most favourable on substrate for methane with the adsorption energy of - 133 meV. For the adsorption with different adsorption heights above the graphite film with four layers, the methane is found to prefer to appear at about 3.21 A above the graphite. We also noted that the adsorption energy does not dependent much on the thickness of the graphite films. The work function is enhanced slightly by adsorption of methane due to the slight charge transfer from the graphite surface to the methane molecule.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 40972196 and 41172263)
文摘Using first-principles methods, we have systematically investigated the electronic density of states, work function, and adsorption energy of the methane molecule adsorbed on graphite(0001) films. The surface energy and the interlayer relaxation of the clean graphite(0001) as a function of the thickness of the film were also studied. The results show that the interlayer relaxation is small due to the weak interaction between the neighboring layers. The one-fold top site is found most favourable on substrate for methane with the adsorption energy of - 133 meV. For the adsorption with different adsorption heights above the graphite film with four layers, the methane is found to prefer to appear at about 3.21 A above the graphite. We also noted that the adsorption energy does not dependent much on the thickness of the graphite films. The work function is enhanced slightly by adsorption of methane due to the slight charge transfer from the graphite surface to the methane molecule.