期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fabrication of a nano-sized ZSM-5 zeolite with intercrystalline mesopores for conversion of methanol to gasoline 被引量:5
1
作者 Tingjun Fu Jiangwei Chang +1 位作者 Juan Shao Zhong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期139-146,共8页
Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZS... Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZSM-5 zeolites can improve its diffusion property and decrease the coke formation. In this paper, nano-sized ZSM-5 zeolite with intercrystalline mesopores combining the mesoporous and nano sized structure was fabricated. For comparison, the mesoporous ZSM-5 and nano-sized ZSM-5 were also prepared. These catalyst samples were characterized by XRD, BET, NH3-TPD, TEM, Py-IR and TG techniques and used on the conversion of methanol to gasoline in a fixed-bed reactor at T=405 degrees C, WHSV =4.74 h(-1) and P=1.0 MPa. It was found that the external surface area of the nano-sized ZSM-5 zeolite with intercrystalline mesopores reached 104 m(2)/g, larger than that of mesoporous ZSM-5 (66 m(2)/g) and nano sized ZSM-5 (76 m(2)/g). Catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores was 93 h, which was only longer than that of mesoporous ZSM-5 (86 h), but shorter than that of nano sized ZSM-5 (104 h). Strong acidity promoted the coke formation and thus decreased the catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores though it presented large external surface that could improve the diffusion property. The special zeolite catalyst was further dealuminated to decrease the strong acidity. After this, its coke formation rate was slowed and catalytic lifetime was prolonged to 106 h because of the large external surface area and decreased weak acidity. This special structural zeolite is a potential catalyst for methanol to gasoline reaction. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 ZSM-5 Crystal size MESOPORE ACIDITY methanol to gasoline
下载PDF
Introduction of table sugar as a soft second template in ZSM-5 nanocatalyst and its effect on product distribution and catalyst lifetime in methanol to gasoline conversion 被引量:3
2
作者 Peyman Noor Mohammadreza Khanmohammadi +2 位作者 Behrooz Roozbehani Fereydoon Yaripour Amir Bagheri Garmarudi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期582-590,共9页
Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared b... Methanol to gasoline reaction was investigated on two prepared ZSM-5 catalysts. The first one was a conventional catalyst denoted as ZSM-5(C) and the other was a hierarchical catalyst-ZSM-5(S) which was prepared by incorporation of table sugar in catalyst gel during the synthesis procedure. The catalysts were characterized by FTIR, XRD, FE-SEM, N2 adsorption-desorption, NH3-TPD and TGA analytical technics. The proposed material showed pore modification as well as acidity moderating properties in ZSM-5 catalyst. The methanol to gasoline reaction was conducted in a fixed bed reactor with a WHSV of 1.5 h-1.Methanol conversions, gasoline yield and selectivity in production for the synthesized catalysts were determined by gas chromatography method. The sugar modified catalyst converted more methanol than the conventional one and an enhancement in catalyst’s life time was observed. The selectivity to aromatics and durene were reduced compared to the conventional catalyst, so the gasoline quality was also further improved. The coking rate of catalysts was calculated employing TGA method. A reduction in coking rate and an increase in coke capacity of the modified catalyst were observed. 展开更多
关键词 MTG ZSM-5 catalyst methanol to gasoline methanol conversion DEACTIVATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部