The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to...The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD) are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So it is a very useful and new tool in studying fracture mechanics problems.展开更多
This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two node...This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two nodes is briefly presented on the basis of the total Lagrangian formulation. The static and dynamic equilibrium equations of mooring lines are established. An incremental-iterative method is used to determine the initial static equilibrium state of cable systems under the action of self weights, buoyancy and current. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method, and examine the effect of various parameters.展开更多
In this study, the method of lines (MOLs) with higher order central difference approximation method coupled with the classical fourth order Runge-Kutta (RK(4,4)) method is used in solving shallow water equations (SWEs...In this study, the method of lines (MOLs) with higher order central difference approximation method coupled with the classical fourth order Runge-Kutta (RK(4,4)) method is used in solving shallow water equations (SWEs) in Cartesian coordinates to foresee water levels associated with a storm accurately along the coast of Bangladesh. In doing so, the partial derivatives of the SWEs with respect to the space variables were discretized with 5-point central difference, as a test case, to obtain a system of ordinary differential equations with time as an independent variable for every spatial grid point, which with initial conditions were solved by the RK(4,4) method. The complex land-sea interface and bottom topographic details were incorporated closely using nested schemes. The coastal and island boundaries were rectangularized through proper stair step representation, and the storing positions of the scalar and momentum variables were specified according to the rules of structured C-grid. A stable tidal regime was made over the model domain considering the effect of the major tidal constituent, M2 along the southern open boundary of the outermost parent scheme. The Meghna River fresh water discharge was taken into account for the inner most child scheme. To take into account the dynamic interaction of tide and surge, the generated tidal regime was introduced as the initial state of the sea, and the surge was then made to come over it through computer simulation. Numerical experiments were performed with the cyclone April 1991 to simulate water levels due to tide, surge, and their interaction at different stations along the coast of Bangladesh. Our computed results were found to compare reasonable well with the limited observed data obtained from Bangladesh Inland Water Transport Authority (BIWTA) and were found to be better in comparison with the results obtained through the regular finite difference method and the 3-point central difference MOLs coupled with the RK(4,4) method with regard to the root mean square error values.展开更多
The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-differenc...In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-difference and finite element methods to approximate spatial derivatives, this new technique does not require a mesh in the problem domain, and a set of scattered nodes provided by initial data is required for the solution of the problem using some radial basis functions. Accuracy of the method is assessed in terms of the error norms L2, L∞ and the three invariants C1, C2, C3. Numerical experiments are performed to demonstrate the accuracy and easy implementation of this method for the three classes of time-dependent nonlinear coupled partial differential equations.展开更多
The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good ac...The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.展开更多
We present a time domain hybrid method to realize the fast coupling analysis of transmission lines excited by space electromagnetic fields, in which parallel finite-difference time-domain (FDTD) method, interpolation ...We present a time domain hybrid method to realize the fast coupling analysis of transmission lines excited by space electromagnetic fields, in which parallel finite-difference time-domain (FDTD) method, interpolation scheme, and Agrawal model-based transmission line (TL) equations are organically integrated together. Specifically, the Agrawal model is employed to establish the TL equations to describe the coupling effects of space electromagnetic fields on transmission lines. Then, the excitation fields functioning as distribution sources in TL equations are calculated by the parallel FDTD method through using the message passing interface (MPI) library scheme and interpolation scheme. Finally, the TL equations are discretized by the central difference scheme of FDTD and assigned to multiple processors to obtain the transient responses on the terminal loads of these lines. The significant feature of the presented method is embodied in its parallel and synchronous calculations of the space electromagnetic fields and transient responses on the lines. Numerical simulations of ambient wave acting on multi-conductor transmission lines (MTLs), which are located on the PEC ground and in the shielded cavity respectively, are implemented to verify the accuracy and efficiency of the presented method.展开更多
The finite element method (FEM) and the boundary element method (BEM) are often adopted. However, they are not convenient to spatially vary thermal properties of functionally graded material (FGM). Therefore, the meth...The finite element method (FEM) and the boundary element method (BEM) are often adopted. However, they are not convenient to spatially vary thermal properties of functionally graded material (FGM). Therefore, the method of lines (MOL) is introduced to solve the temperature field of FGM. The basic idea of the method is to semi-discretize the governing equation into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs. The functions of thermal properties are directly embodied in these equations and these properties are not discretized in the domain. Thus, difficulty of FEM and BEM is overcome by the method. As a numerical example, the temperature field of a plane problem is analyzed for FGMs through varying thermal conductivity coefficient by the MOL.展开更多
In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under...In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under the convex assumption on the objective function,we preve the descenf property and the global convergence of this method.展开更多
The method of lines based on Hu Hai-chang 's theory for the vibration and stability of moderate thick plates is developed. The standard nonlinear ordinary differential equation (ODE) system for natural frequencies...The method of lines based on Hu Hai-chang 's theory for the vibration and stability of moderate thick plates is developed. The standard nonlinear ordinary differential equation (ODE) system for natural frequencies and critical load is given by use of ODE techniques, and then any indicated eigenvalue could be obtained directly from ODE solver by employing the so-called initial eigenfunction technique instead of the mode orthogonality condition. Numerical examples show that the present method is very effective and reliable.展开更多
Live line measurement methods can reduce the loss of power outages and eliminate interference. There are three live line measurement methods including integral method, differential method and algebraic method. A simul...Live line measurement methods can reduce the loss of power outages and eliminate interference. There are three live line measurement methods including integral method, differential method and algebraic method. A simulation model of?two coupled parallel transmission lines spanning on the same towers is built in PSCAD and the calculation errors of these three methods are compared with different sampling frequencies by using of Matlab. The effect of harmonic on calculation is also involved. The simulation results indicate that harmonic has the least effect on the algebraic method which provides stable result and small error.展开更多
To solve the coupling effect of multiconductor transmission lines excited by external electromagnetic wave, the modified method of characteristics is proposed. The modified method of characteristics which can compute ...To solve the coupling effect of multiconductor transmission lines excited by external electromagnetic wave, the modified method of characteristics is proposed. The modified method of characteristics which can compute the terminal induced voltages excited by the external electromagnetic wave when the terminal networks or intereonnection networks contain the dynamic elements is introduced. The simulation results indicate that the modified method can analyze the terminal induced voltages when the terminal networks or the interconnection networks contain the dynamic elements excited by the external electromagnetic wave. And the results are compared with the results acquired by FDTD method, the two results are completely same. So one effective modified method is implemented to compute the transmission lines.展开更多
This paper presents the analysis of open microstrip structures by using diakoptic method of lines (ML) combined with periodic boundary conditions (PBC). The parameters of microstrip patch are obtained from patch curre...This paper presents the analysis of open microstrip structures by using diakoptic method of lines (ML) combined with periodic boundary conditions (PBC). The parameters of microstrip patch are obtained from patch current excited by plane wave. Impedance matrix elements are computed by using fast Fourier transform(FFT), and reduced equation is solved by using diakoptic technique. Consequently, the computing time is reduced significantly. The convergence property of simulating open structure by using PBC and the comparison of the computer time between using PBC and usual absorbing boundary condition (ABC) show the validity of the method proposed in this paper. Finally, the resonant frequency of a microstrip patch is computed. The numerical results obtained are in good agreement with those published.展开更多
A new modification of the Method of Lines is proposed for the solution of first order partial differential equations. The accuracy of the method is shown with the matrix analysis. The method is applied to a number of ...A new modification of the Method of Lines is proposed for the solution of first order partial differential equations. The accuracy of the method is shown with the matrix analysis. The method is applied to a number of test problems, on uniform grids, to compare the accuracy and computational efficiency with the standard method.展开更多
Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and effic...Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.展开更多
In this work, an algorithm based on method of lines coupled with radial basis functions namely meshless method of lines (MMOL) is presented for the numerical solution of Kawahara, modified Kawahara and KdV Kawahara eq...In this work, an algorithm based on method of lines coupled with radial basis functions namely meshless method of lines (MMOL) is presented for the numerical solution of Kawahara, modified Kawahara and KdV Kawahara equations. The motion of a single solitary wave, interaction of two and three solitons and the phenomena of wave generation is discussed. The results are compared with the exact solution and with the results in the relevant literature to show the efficiency of the method.展开更多
In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) numerically. Two numerical methods are derived using the explicit Runge-Kutta method of order four and the linear multistep method (Predictor-Correc...In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) numerically. Two numerical methods are derived using the explicit Runge-Kutta method of order four and the linear multistep method (Predictor-Corrector method of fourth order). The resulting schemes of fourth order accuracy in spatial and temporal directions. The CNSE is non-integrable and has two kinds of soliton solutions: bright and dark soliton. The exact solutions and the conserved quantities of CNSE are used to display the efficiency and robustness of the numerical methods we derived. Interaction of two bright solitons for different parameters is also displayed.展开更多
The method of lines(MOL) for solving the problems of functionally gradient materials(FGMs) was studied. Navier’s equations for FGMs were derived, and were semi-discretized into a system of ordinary differential (equa...The method of lines(MOL) for solving the problems of functionally gradient materials(FGMs) was studied. Navier’s equations for FGMs were derived, and were semi-discretized into a system of ordinary differential (equations(ODEs)) defined on discrete lines with the finite difference. By solving the system of ODEs, the solutions to the problem can be obtained. An example of three-point bending was given to demonstrate the application of MOL for a crack problem in the FGM. The computational results show that the more accurate results can be obtained with less computational time and resources. The obvious difficulties of numerical method for crack problems in FGMs, such as the effect of material nonhomogeneity and the existence of high gradient stress and strain near a crack tip, can be overcome without additional consideration if this method is adopted.展开更多
The MacCormack method is applied to the analysis of multiconductor transmission lines by intro- ducing a new technique that does not require decoupling. This method can be used to analyze a wide range of problems and ...The MacCormack method is applied to the analysis of multiconductor transmission lines by intro- ducing a new technique that does not require decoupling. This method can be used to analyze a wide range of problems and does not have to consider the matrix forms of distributed parameters. We have developed soft- ware named MacCormack Transmission Line Analyzer based on the proposed method. Numerical examples are presented to demonstrate the accuracy and efficiency of the method and illustrate its application to analyz- ing multiconductor transmission lines.展开更多
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
文摘The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD) are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So it is a very useful and new tool in studying fracture mechanics problems.
基金supported by the National Natural Science Foundation of China (Grant No.11072052)the National High Technology Research and Development Program of China (863 Program,Grant No.2006AA09A109-3)
文摘This study has focused on developing numerical procedures for the static and dynamic nonlinear analysis of mooring lines. A geometrically nonlinear finite element method using isoparametric cable element with two nodes is briefly presented on the basis of the total Lagrangian formulation. The static and dynamic equilibrium equations of mooring lines are established. An incremental-iterative method is used to determine the initial static equilibrium state of cable systems under the action of self weights, buoyancy and current. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method, and examine the effect of various parameters.
文摘In this study, the method of lines (MOLs) with higher order central difference approximation method coupled with the classical fourth order Runge-Kutta (RK(4,4)) method is used in solving shallow water equations (SWEs) in Cartesian coordinates to foresee water levels associated with a storm accurately along the coast of Bangladesh. In doing so, the partial derivatives of the SWEs with respect to the space variables were discretized with 5-point central difference, as a test case, to obtain a system of ordinary differential equations with time as an independent variable for every spatial grid point, which with initial conditions were solved by the RK(4,4) method. The complex land-sea interface and bottom topographic details were incorporated closely using nested schemes. The coastal and island boundaries were rectangularized through proper stair step representation, and the storing positions of the scalar and momentum variables were specified according to the rules of structured C-grid. A stable tidal regime was made over the model domain considering the effect of the major tidal constituent, M2 along the southern open boundary of the outermost parent scheme. The Meghna River fresh water discharge was taken into account for the inner most child scheme. To take into account the dynamic interaction of tide and surge, the generated tidal regime was introduced as the initial state of the sea, and the surge was then made to come over it through computer simulation. Numerical experiments were performed with the cyclone April 1991 to simulate water levels due to tide, surge, and their interaction at different stations along the coast of Bangladesh. Our computed results were found to compare reasonable well with the limited observed data obtained from Bangladesh Inland Water Transport Authority (BIWTA) and were found to be better in comparison with the results obtained through the regular finite difference method and the 3-point central difference MOLs coupled with the RK(4,4) method with regard to the root mean square error values.
文摘The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
文摘In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-difference and finite element methods to approximate spatial derivatives, this new technique does not require a mesh in the problem domain, and a set of scattered nodes provided by initial data is required for the solution of the problem using some radial basis functions. Accuracy of the method is assessed in terms of the error norms L2, L∞ and the three invariants C1, C2, C3. Numerical experiments are performed to demonstrate the accuracy and easy implementation of this method for the three classes of time-dependent nonlinear coupled partial differential equations.
文摘The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.
基金Project supported by the National Natural Science Foundation of China(Grant No.61701057)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2017jcyjAX0345).
文摘We present a time domain hybrid method to realize the fast coupling analysis of transmission lines excited by space electromagnetic fields, in which parallel finite-difference time-domain (FDTD) method, interpolation scheme, and Agrawal model-based transmission line (TL) equations are organically integrated together. Specifically, the Agrawal model is employed to establish the TL equations to describe the coupling effects of space electromagnetic fields on transmission lines. Then, the excitation fields functioning as distribution sources in TL equations are calculated by the parallel FDTD method through using the message passing interface (MPI) library scheme and interpolation scheme. Finally, the TL equations are discretized by the central difference scheme of FDTD and assigned to multiple processors to obtain the transient responses on the terminal loads of these lines. The significant feature of the presented method is embodied in its parallel and synchronous calculations of the space electromagnetic fields and transient responses on the lines. Numerical simulations of ambient wave acting on multi-conductor transmission lines (MTLs), which are located on the PEC ground and in the shielded cavity respectively, are implemented to verify the accuracy and efficiency of the presented method.
文摘The finite element method (FEM) and the boundary element method (BEM) are often adopted. However, they are not convenient to spatially vary thermal properties of functionally graded material (FGM). Therefore, the method of lines (MOL) is introduced to solve the temperature field of FGM. The basic idea of the method is to semi-discretize the governing equation into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs. The functions of thermal properties are directly embodied in these equations and these properties are not discretized in the domain. Thus, difficulty of FEM and BEM is overcome by the method. As a numerical example, the temperature field of a plane problem is analyzed for FGMs through varying thermal conductivity coefficient by the MOL.
基金This work is supported by the National Natural Science Foundation of China
文摘In this paper we consider the global convergence of any conjugate gradient method of the form d1=-g1,dk+1=-gk+1+βkdk(k≥1)with any βk satisfying sume conditions,and with the strong wolfe line search conditions.Under the convex assumption on the objective function,we preve the descenf property and the global convergence of this method.
基金The project supported by the Pioneer Fundation of Tongji University
文摘The method of lines based on Hu Hai-chang 's theory for the vibration and stability of moderate thick plates is developed. The standard nonlinear ordinary differential equation (ODE) system for natural frequencies and critical load is given by use of ODE techniques, and then any indicated eigenvalue could be obtained directly from ODE solver by employing the so-called initial eigenfunction technique instead of the mode orthogonality condition. Numerical examples show that the present method is very effective and reliable.
文摘Live line measurement methods can reduce the loss of power outages and eliminate interference. There are three live line measurement methods including integral method, differential method and algebraic method. A simulation model of?two coupled parallel transmission lines spanning on the same towers is built in PSCAD and the calculation errors of these three methods are compared with different sampling frequencies by using of Matlab. The effect of harmonic on calculation is also involved. The simulation results indicate that harmonic has the least effect on the algebraic method which provides stable result and small error.
文摘To solve the coupling effect of multiconductor transmission lines excited by external electromagnetic wave, the modified method of characteristics is proposed. The modified method of characteristics which can compute the terminal induced voltages excited by the external electromagnetic wave when the terminal networks or intereonnection networks contain the dynamic elements is introduced. The simulation results indicate that the modified method can analyze the terminal induced voltages when the terminal networks or the interconnection networks contain the dynamic elements excited by the external electromagnetic wave. And the results are compared with the results acquired by FDTD method, the two results are completely same. So one effective modified method is implemented to compute the transmission lines.
基金Supported by the National Natural Science Foundation of China
文摘This paper presents the analysis of open microstrip structures by using diakoptic method of lines (ML) combined with periodic boundary conditions (PBC). The parameters of microstrip patch are obtained from patch current excited by plane wave. Impedance matrix elements are computed by using fast Fourier transform(FFT), and reduced equation is solved by using diakoptic technique. Consequently, the computing time is reduced significantly. The convergence property of simulating open structure by using PBC and the comparison of the computer time between using PBC and usual absorbing boundary condition (ABC) show the validity of the method proposed in this paper. Finally, the resonant frequency of a microstrip patch is computed. The numerical results obtained are in good agreement with those published.
文摘A new modification of the Method of Lines is proposed for the solution of first order partial differential equations. The accuracy of the method is shown with the matrix analysis. The method is applied to a number of test problems, on uniform grids, to compare the accuracy and computational efficiency with the standard method.
基金Project supported by the National Natural Sciences Foundation of China(Nos.59525813 and 19872066)the Cardiff Advanced Chinese Engineering Centre of Cardiff University.
文摘Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.
文摘In this work, an algorithm based on method of lines coupled with radial basis functions namely meshless method of lines (MMOL) is presented for the numerical solution of Kawahara, modified Kawahara and KdV Kawahara equations. The motion of a single solitary wave, interaction of two and three solitons and the phenomena of wave generation is discussed. The results are compared with the exact solution and with the results in the relevant literature to show the efficiency of the method.
文摘In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) numerically. Two numerical methods are derived using the explicit Runge-Kutta method of order four and the linear multistep method (Predictor-Corrector method of fourth order). The resulting schemes of fourth order accuracy in spatial and temporal directions. The CNSE is non-integrable and has two kinds of soliton solutions: bright and dark soliton. The exact solutions and the conserved quantities of CNSE are used to display the efficiency and robustness of the numerical methods we derived. Interaction of two bright solitons for different parameters is also displayed.
基金Projects(90305023 59731020) supported by the National Natural Science Foundation of China
文摘The method of lines(MOL) for solving the problems of functionally gradient materials(FGMs) was studied. Navier’s equations for FGMs were derived, and were semi-discretized into a system of ordinary differential (equations(ODEs)) defined on discrete lines with the finite difference. By solving the system of ODEs, the solutions to the problem can be obtained. An example of three-point bending was given to demonstrate the application of MOL for a crack problem in the FGM. The computational results show that the more accurate results can be obtained with less computational time and resources. The obvious difficulties of numerical method for crack problems in FGMs, such as the effect of material nonhomogeneity and the existence of high gradient stress and strain near a crack tip, can be overcome without additional consideration if this method is adopted.
文摘The MacCormack method is applied to the analysis of multiconductor transmission lines by intro- ducing a new technique that does not require decoupling. This method can be used to analyze a wide range of problems and does not have to consider the matrix forms of distributed parameters. We have developed soft- ware named MacCormack Transmission Line Analyzer based on the proposed method. Numerical examples are presented to demonstrate the accuracy and efficiency of the method and illustrate its application to analyz- ing multiconductor transmission lines.