以整体优化抬落道量最小为目标进行纵断面重构时,由于纵断面整体优化中各线元数学模型不同,拟合后的线元连接处会存在错位现象,不满足相邻线元首尾相接的平顺性条件。因此,本文提出了利用引入相切条件的方向加速(Powell with Tangent Co...以整体优化抬落道量最小为目标进行纵断面重构时,由于纵断面整体优化中各线元数学模型不同,拟合后的线元连接处会存在错位现象,不满足相邻线元首尾相接的平顺性条件。因此,本文提出了利用引入相切条件的方向加速(Powell with Tangent Condition,PTC)法来重构纵断面线形。首先利用方向加速(Powell)法进行各线元拟合优化,然后对竖曲线圆心坐标进行调整,通过调整后的圆心坐标重新计算纵断面竖曲线半径及直圆点和圆直点坐标,使竖曲线与左右两侧相邻直线坡段相切。对比利用PTC法与传统的曲率分段结合最小二乘法重构线形的抬落道量,结果表明,PTC法对线路重构的扰动更小,优化效果更好,在减小抬落道方面有显著优势。通过动力学仿真对比Powell法和PTC法优化线形后的车体动力学指标,结果表明,PTC法重构纵断面所得的线元连接处平顺性显著提高,各车体动力学性能指标明显减小,车辆运行的安全性和舒适性得到明显改善。展开更多
Bubble functions are finite element modes that are zero on the boundary of the element but nonzero at the other point. The present paper adds bubble functions to the ordinary Complex Finite Strip Method(CFSM) to calcu...Bubble functions are finite element modes that are zero on the boundary of the element but nonzero at the other point. The present paper adds bubble functions to the ordinary Complex Finite Strip Method(CFSM) to calculate the elastic local buckling stress of plates and plate assemblies. The results indicate that the use of bubble functions greatly improves the convergence of the Finite Strip Method(FSM) in terms of strip subdivision, and leads to much smaller storage required for the structure stiffness and stability matrices. Numerical examples are given, including plates and plate structures subjected to a combination of longitudinal and transverse compression, bending and shear. This study illustrates the power of bubble functions in solving stability problems of plates and plate structures.展开更多
文摘以整体优化抬落道量最小为目标进行纵断面重构时,由于纵断面整体优化中各线元数学模型不同,拟合后的线元连接处会存在错位现象,不满足相邻线元首尾相接的平顺性条件。因此,本文提出了利用引入相切条件的方向加速(Powell with Tangent Condition,PTC)法来重构纵断面线形。首先利用方向加速(Powell)法进行各线元拟合优化,然后对竖曲线圆心坐标进行调整,通过调整后的圆心坐标重新计算纵断面竖曲线半径及直圆点和圆直点坐标,使竖曲线与左右两侧相邻直线坡段相切。对比利用PTC法与传统的曲率分段结合最小二乘法重构线形的抬落道量,结果表明,PTC法对线路重构的扰动更小,优化效果更好,在减小抬落道方面有显著优势。通过动力学仿真对比Powell法和PTC法优化线形后的车体动力学指标,结果表明,PTC法重构纵断面所得的线元连接处平顺性显著提高,各车体动力学性能指标明显减小,车辆运行的安全性和舒适性得到明显改善。
基金the Natural Science Foundation of Jiangxi Province of Chinathe Basic Theory Research Foundation of Nanchang University
文摘Bubble functions are finite element modes that are zero on the boundary of the element but nonzero at the other point. The present paper adds bubble functions to the ordinary Complex Finite Strip Method(CFSM) to calculate the elastic local buckling stress of plates and plate assemblies. The results indicate that the use of bubble functions greatly improves the convergence of the Finite Strip Method(FSM) in terms of strip subdivision, and leads to much smaller storage required for the structure stiffness and stability matrices. Numerical examples are given, including plates and plate structures subjected to a combination of longitudinal and transverse compression, bending and shear. This study illustrates the power of bubble functions in solving stability problems of plates and plate structures.