The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravitating bodies is described. The new approach is founded on the probability description of the physica...The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravitating bodies is described. The new approach is founded on the probability description of the physical parameters and a similarity method which permits a manifold reduction of the calculation time for the evolution of “large” systems. This is done by averaging the results of calculations over an ensemble of many “small” systems with total particle number in the ensemble equal to the number of stars in the large system. The method is valid for the approximate calculation of the evolution of large systems, including dissipative systems like AGN containing a supermassive black hole, accretion disc, and the surrounding stellar cluster.展开更多
Numerical investigation of a new similarity method (the Aldar-Kose method) for N-body simulations is described. Using this method we have carried out numerical simulations for two tasks: 1) calculation of the temporal...Numerical investigation of a new similarity method (the Aldar-Kose method) for N-body simulations is described. Using this method we have carried out numerical simulations for two tasks: 1) calculation of the temporal behavior of different physical parameters of active galactic nuclei (AGN) containing a super massive black hole (SMBH), an accretion disk, and a compact stellar cluster;2) calculation of the stellar capture rate to the central SMBH without accretion disk. The calculations show good perspectives for applications of the similarity method to optimize the evolution model calculations of large stellar systems and of AGN.展开更多
Gravitation is one of the central forces playing an important role in formation of natural systems like galaxies and planets. Gravitational forces between particles of a gaseous cloud transform the cloud into spherica...Gravitation is one of the central forces playing an important role in formation of natural systems like galaxies and planets. Gravitational forces between particles of a gaseous cloud transform the cloud into spherical shells and disks of higher density during gravitational contraction. The density can reach that of a solid body. The theoretical model was tested to model the formation of a spiral galaxy and Saturn. The formations of a spiral galaxy and Saturn and its disk are simulated using a novel N-body self-gravitational model. It is demonstrated that the formation of the spirals of the galaxy and disk of the planet is the result of gravitational contraction of a slowly rotated particle cloud that has a shape of slightly deformed sphere for Saturn and ellipsoid for the spiral galaxy. For Saturn, the sphere was flattened by a coefficient of 0.8 along the axis of rotation. During the gravitational contraction, the major part of the cloud transformed into a planet and a minor part transformed into a disk. The thin structured disk is a result of the electromagnetic interaction in which the magnetic forces acting on charged particles of the cloud originate from the core of the planet.展开更多
In this paper,the formation of terrestrial planets in the late stage of planetary formation is investigated using the two-planet model.At that time,the protostar formed for about 3 Ma and the gas disk dissipated.In th...In this paper,the formation of terrestrial planets in the late stage of planetary formation is investigated using the two-planet model.At that time,the protostar formed for about 3 Ma and the gas disk dissipated.In the model,the perturbations from Jupiter and Saturn are considered.Variations of the mass of outer planet,and the initial eccentricities and inclinations of embryos and planetesimals are also considered.Our results show that,terrestrial planets are formed in 50 Ma,and the accretion rate is about 60%-80%.In each simulation,3-4 terrestrial planets are formed inside"Jupiter"with masses of 0.15 -3.6M⊕.In the 0.5-4 AU,when the eccentricities of planetesimals are excited,planetesimals are able to accrete material from wide radial direction.The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism.Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 10 8 a.In one of our simulations,commensurability of the orbital periods of planets is very common.Moreover,a librating-circulating 3:2 configuration of mean motion resonance is found.展开更多
We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the ...We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this system can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790AU 〈 a 〈 5.900AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and several stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.展开更多
The power spectrum estimator based on the Discrete Wavelet Transfor- mation (DWT) is applied to detect the clustering power in the IRAS Point Source Catalog Redshift Survey (PSCz). Comparison with mock samples extract...The power spectrum estimator based on the Discrete Wavelet Transfor- mation (DWT) is applied to detect the clustering power in the IRAS Point Source Catalog Redshift Survey (PSCz). Comparison with mock samples extracted from N-body simulation shows that the DWT power spectrum estimator could provide a robust measurement of banded fluctuation power over a range of wavenumbers 0.1 ~ 2.0hMpc-1. We have fitted three typical CDM models (SCDM, τCDM and CDM) using the Peacock-Dodds formula including non-linear evolution and redshift distortion. We find that, our results are in good agreement with other statistical measurements of the PSCz.展开更多
In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the m...In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the matter here, we will see in part 1: about the Galaxy life cycle, where the birth and death of Galaxies discussed. Probably Universe gives guidance for the movement of Galaxies. We call this Part 1: Thinking and Reproducing Universe or Mindless Universe? (Galaxy life cycle). We see every day Sun, Stars, Galaxies etc., dissipating enormous energy in the form of radiation by the way of fusion of Hydrogen to helium. So after sometime all the Hydrogen is spent and Universe will die, is it not? … Dynamic Universe Model says that the energy in the form of electromagnetic radiation passing grazingly near any gravitating mass changes in frequency and finally will convert into neutrinos (mass). Hence Dynamic Universe Model proposes another process where energy will be converted back into matter and the cycle energy to mass to energy continues, sustaining the Universe to maintain this present status for ever in this form something like a Steady state model without any expansion. This we will see in Part 2: Energy - Mass - Energy Cycle. After converting energy into mass “how various elements are formed and where they are formed?” will be next logical question. Dynamic Universe Model says that these various particles change into higher massive particles or may get bombarded into stars or planets and various elements are formed. Here we bifurcate the formation of elements into 6 processes. They are for Elementary particles and elements generated in frequency changing process, By Cosmic rays, By Small stars, By Large Stars, By Super Novae and Manmade elements By Neutron Stars. This we will discuss in Part 3: Nucleosynthesis.展开更多
以动能撞击防御潜在威胁小行星概念为背景,采用物质点法(Material Point Method,MPM)模拟了铝弹高速撞击S型小行星的过程,将撞击结果导入引力N体–离散元动力学模型中,对其后续演化过程进行仿真,并分析了撞击后碎片对地球的威胁指数。...以动能撞击防御潜在威胁小行星概念为背景,采用物质点法(Material Point Method,MPM)模拟了铝弹高速撞击S型小行星的过程,将撞击结果导入引力N体–离散元动力学模型中,对其后续演化过程进行仿真,并分析了撞击后碎片对地球的威胁指数。结果显示小行星在高速撞击的作用下部分破碎,大量碎片以与撞击方向相反的速度向外喷射,从而提升了小行星的撞击偏移效果。研究采用了两种不同结构的小行星模型:完整结构(monolithic structure)的小行星在遭受撞击后会喷射出比原小行星小得多的碎片,而碎石堆结构(rubble-pile structure)的小行星在撞击作用下可分裂成大小和速度分布较为均匀的碎片。威胁指数的分析表明动能撞击方式确实有效减小了小行星的威胁程度,撞击后的最大剩余碎片可被成功偏移至安全轨道,但仍有部分碎片会与地球相撞。与完整结构相比,针对碎石堆结构小行星的撞击防御的总体效果更好,次生灾害主要为大质量碎片的撞击。研究方法可用于未来开展防御小行星的动能撞击任务的撞击条件选择和撞击结果预估。展开更多
文摘The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravitating bodies is described. The new approach is founded on the probability description of the physical parameters and a similarity method which permits a manifold reduction of the calculation time for the evolution of “large” systems. This is done by averaging the results of calculations over an ensemble of many “small” systems with total particle number in the ensemble equal to the number of stars in the large system. The method is valid for the approximate calculation of the evolution of large systems, including dissipative systems like AGN containing a supermassive black hole, accretion disc, and the surrounding stellar cluster.
文摘Numerical investigation of a new similarity method (the Aldar-Kose method) for N-body simulations is described. Using this method we have carried out numerical simulations for two tasks: 1) calculation of the temporal behavior of different physical parameters of active galactic nuclei (AGN) containing a super massive black hole (SMBH), an accretion disk, and a compact stellar cluster;2) calculation of the stellar capture rate to the central SMBH without accretion disk. The calculations show good perspectives for applications of the similarity method to optimize the evolution model calculations of large stellar systems and of AGN.
文摘Gravitation is one of the central forces playing an important role in formation of natural systems like galaxies and planets. Gravitational forces between particles of a gaseous cloud transform the cloud into spherical shells and disks of higher density during gravitational contraction. The density can reach that of a solid body. The theoretical model was tested to model the formation of a spiral galaxy and Saturn. The formations of a spiral galaxy and Saturn and its disk are simulated using a novel N-body self-gravitational model. It is demonstrated that the formation of the spirals of the galaxy and disk of the planet is the result of gravitational contraction of a slowly rotated particle cloud that has a shape of slightly deformed sphere for Saturn and ellipsoid for the spiral galaxy. For Saturn, the sphere was flattened by a coefficient of 0.8 along the axis of rotation. During the gravitational contraction, the major part of the cloud transformed into a planet and a minor part transformed into a disk. The thin structured disk is a result of the electromagnetic interaction in which the magnetic forces acting on charged particles of the cloud originate from the core of the planet.
基金Supported by the National Natural Science Foundation of China(Grant Nos.10573040,10673006,10833001,and 10233020)the Foundation of Minor Planets of Purple Mountain Observatory
文摘In this paper,the formation of terrestrial planets in the late stage of planetary formation is investigated using the two-planet model.At that time,the protostar formed for about 3 Ma and the gas disk dissipated.In the model,the perturbations from Jupiter and Saturn are considered.Variations of the mass of outer planet,and the initial eccentricities and inclinations of embryos and planetesimals are also considered.Our results show that,terrestrial planets are formed in 50 Ma,and the accretion rate is about 60%-80%.In each simulation,3-4 terrestrial planets are formed inside"Jupiter"with masses of 0.15 -3.6M⊕.In the 0.5-4 AU,when the eccentricities of planetesimals are excited,planetesimals are able to accrete material from wide radial direction.The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism.Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of 10 8 a.In one of our simulations,commensurability of the orbital periods of planets is very common.Moreover,a librating-circulating 3:2 configuration of mean motion resonance is found.
基金Supported by the National Natural Science Foundation of China
文摘We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this system can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790AU 〈 a 〈 5.900AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and several stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.
基金Supported by the National Natur al Science Foun dation of China.
文摘The power spectrum estimator based on the Discrete Wavelet Transfor- mation (DWT) is applied to detect the clustering power in the IRAS Point Source Catalog Redshift Survey (PSCz). Comparison with mock samples extracted from N-body simulation shows that the DWT power spectrum estimator could provide a robust measurement of banded fluctuation power over a range of wavenumbers 0.1 ~ 2.0hMpc-1. We have fitted three typical CDM models (SCDM, τCDM and CDM) using the Peacock-Dodds formula including non-linear evolution and redshift distortion. We find that, our results are in good agreement with other statistical measurements of the PSCz.
文摘In this paper we will see the model of Universe according to Dynamic Universe Model of Cosmology by visualizing various processes that are happening in the Universe as per experimental evidences. For simplifying the matter here, we will see in part 1: about the Galaxy life cycle, where the birth and death of Galaxies discussed. Probably Universe gives guidance for the movement of Galaxies. We call this Part 1: Thinking and Reproducing Universe or Mindless Universe? (Galaxy life cycle). We see every day Sun, Stars, Galaxies etc., dissipating enormous energy in the form of radiation by the way of fusion of Hydrogen to helium. So after sometime all the Hydrogen is spent and Universe will die, is it not? … Dynamic Universe Model says that the energy in the form of electromagnetic radiation passing grazingly near any gravitating mass changes in frequency and finally will convert into neutrinos (mass). Hence Dynamic Universe Model proposes another process where energy will be converted back into matter and the cycle energy to mass to energy continues, sustaining the Universe to maintain this present status for ever in this form something like a Steady state model without any expansion. This we will see in Part 2: Energy - Mass - Energy Cycle. After converting energy into mass “how various elements are formed and where they are formed?” will be next logical question. Dynamic Universe Model says that these various particles change into higher massive particles or may get bombarded into stars or planets and various elements are formed. Here we bifurcate the formation of elements into 6 processes. They are for Elementary particles and elements generated in frequency changing process, By Cosmic rays, By Small stars, By Large Stars, By Super Novae and Manmade elements By Neutron Stars. This we will discuss in Part 3: Nucleosynthesis.
文摘以动能撞击防御潜在威胁小行星概念为背景,采用物质点法(Material Point Method,MPM)模拟了铝弹高速撞击S型小行星的过程,将撞击结果导入引力N体–离散元动力学模型中,对其后续演化过程进行仿真,并分析了撞击后碎片对地球的威胁指数。结果显示小行星在高速撞击的作用下部分破碎,大量碎片以与撞击方向相反的速度向外喷射,从而提升了小行星的撞击偏移效果。研究采用了两种不同结构的小行星模型:完整结构(monolithic structure)的小行星在遭受撞击后会喷射出比原小行星小得多的碎片,而碎石堆结构(rubble-pile structure)的小行星在撞击作用下可分裂成大小和速度分布较为均匀的碎片。威胁指数的分析表明动能撞击方式确实有效减小了小行星的威胁程度,撞击后的最大剩余碎片可被成功偏移至安全轨道,但仍有部分碎片会与地球相撞。与完整结构相比,针对碎石堆结构小行星的撞击防御的总体效果更好,次生灾害主要为大质量碎片的撞击。研究方法可用于未来开展防御小行星的动能撞击任务的撞击条件选择和撞击结果预估。