期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Introduction of the Elastic-Collision Screening Method with Multipe-degree of Freedom
1
《International Journal of Mining Science and Technology》 SCIE EI 1997年第1期77-77,共1页
关键词 introduction of the Elastic-Collision Screening Method with Multipe-degree of Freedom
下载PDF
Effects of different introduction methods of Ce^4+and Zr^4+on denitration performance and anti-K poisoning performance of V2O5-WO3/TiO2 catalyst 被引量:8
2
作者 Jun Cao Xiaojiang Yao +3 位作者 Li Chen Keke Kang Min Fu Yang Chen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第11期1207-1214,I0003,共9页
The purpose of this work is to explore the effects of the introduction methods of Ce^4+and Zr^4+on the physicochemical properties,activity,and K tolerance of V2 O5-WO3/TiO2 catalyst for the selective catalytic reducti... The purpose of this work is to explore the effects of the introduction methods of Ce^4+and Zr^4+on the physicochemical properties,activity,and K tolerance of V2 O5-WO3/TiO2 catalyst for the selective catalytic reduction of NOx by NH3.Four different methods,namely pre-impregnation,post-impregnation,coimpregnation,and co-precipitation,were used to synthesize a series of V2 O5-WO3-TiO2-CeO2-ZrO2 catalysts.The catalysts were characterized by XRD,BET,NH3-TPD,XPS,and H2-TPR techniques.Moreover,the activity and anti-K poisoning performance were tested by an NH3-SCR model reaction.The results show that the introduction of Ce^4+and Zr^4+can improve the catalytic performance of V2O5-WO3/TiO2 catalyst,but the impregnation method cannot enhance the anti-K poisoning performance.Ce^4+and Zr^4+introduced by co-precipitation method can effectively improve the tolerance of K,which is mainly due to the incorporation of Ce^4+and Zr^4+into TiO2 lattice to form a uniform TiO2-CeO2-ZrO2 solid solution,resulting in the optimal surface acidity and redox performance,and reducing the decreases caused by Kpoisoning.Furthermore,based on the best introduction method,we further optimized the molar ratio of Ce^4+/Zr^4+,It is found that the catalyst exhibits the best anti-K poisoning performance when the molar ratio of Ce^4+/Zr^4+is 2:1. 展开更多
关键词 V2O5-WO3/TiO2 denitration catalyst Ce^4+ Zr^4+modification introduction methods Molar ratio Anti-K poisoning performance Rare Earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部