This article continues to study the research suggestions in depth made by M.Z.Nashed and G.F.Votruba in the journal"Bull.Amer.Math.Soc."in 1974.Concerned with the pricing of non-reachable"contingent cla...This article continues to study the research suggestions in depth made by M.Z.Nashed and G.F.Votruba in the journal"Bull.Amer.Math.Soc."in 1974.Concerned with the pricing of non-reachable"contingent claims"in an incomplete financial market,when constructing a specific bounded linear operator A:l_(1)^(n)→l_(2) from a non-reflexive Banach space l_(1)^(n) to a Hilbert space l_(2),the problem of non-reachable"contingent claims"pricing is reduced to researching the(single-valued)selection of the(set-valued)metric generalized inverse A■ of the operator A.In this paper,by using the Banach space structure theory and the generalized inverse method of operators,we obtain a bounded linear single-valued selection A^(σ)=A+of A■.展开更多
In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N(T)is an approximative compact Chebyshev subspace of X and R(T)is a 3-Chebyshev hyperplane,then there...In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N(T)is an approximative compact Chebyshev subspace of X and R(T)is a 3-Chebyshev hyperplane,then there exists a homogeneous selection T^(σ)of T^(■)such that continuous points of T^(σ)and T^(■)are dense on Y.展开更多
The Moore-Penrose metric generalized inverse T+ of linear operator T in Banach space is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a linear operator in Banach Space, the Moo...The Moore-Penrose metric generalized inverse T+ of linear operator T in Banach space is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a linear operator in Banach Space, the Moore-Penrose metric generalized inverse T+ is usually homogeneous and nonlinear in general. By means of the methods of geometry of Banach Space, the necessary and sufficient conditions for existence, continuitv, linearity and minimum property of the Moore-Penrose metric generalized inverse T+ will be given, and some properties of T+ will be investigated in this paper.展开更多
In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessar...In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessary and sufficient conditions for bounded linear operators T to have continuous homogeneous selections for the set-valued metric generalized inverses T~ are given. The results are an answer to the problem posed by Nashed and Votruba.展开更多
In this paper, the perturbations of the Moore-Penrose metric generalized inverses of linear operators in Banach spaces are described. The Moore Penrose metric generalized inverse is homo- geneous and nonlinear in gene...In this paper, the perturbations of the Moore-Penrose metric generalized inverses of linear operators in Banach spaces are described. The Moore Penrose metric generalized inverse is homo- geneous and nonlinear in general, and the proofs of our results are different from linear generalized inverses. By using the quasi-additivity of Moore-Penrose metric generalized inverse and the theorem of generalized orthogonal decomposition, we show some error estimates of perturbations for the single- valued Moore-Penrose metric generalized inverses of bounded linear operators. Furthermore, by means of the continuity of the metric projection operator and the quasi-additivity of Moore-Penrose metric generalized inverse, an expression for Moore-Penrose metric generalized inverse is given.展开更多
Let X, Y be Banach spaces and M be a linear subspace in X x Y = {{x,y}lx E X,y C Y}. We may view M as a multi-valued linear operator from X to Y by taking M(x) = {yl(x,y} C M}. In this paper, we give several criter...Let X, Y be Banach spaces and M be a linear subspace in X x Y = {{x,y}lx E X,y C Y}. We may view M as a multi-valued linear operator from X to Y by taking M(x) = {yl(x,y} C M}. In this paper, we give several criteria for a single-valued operator from Y to X to be the metric generalized inverse of the multi-valued linear operator M. The principal tool in this paper is also the generalized orthogonal decomposition theorem in Banach spaces.展开更多
Let X, Y be reflexive strictly convex Banach spaces, let T, δT : X → Y be bounded linear operators with closed range R(T). Put T= T + δT. In this paper, by using the concept of quasiadditivity and the so called...Let X, Y be reflexive strictly convex Banach spaces, let T, δT : X → Y be bounded linear operators with closed range R(T). Put T= T + δT. In this paper, by using the concept of quasiadditivity and the so called generalized Neumman lemma, we will give some error estimates of the bounds of ||T^M||. By using a relation between the concepts of the reduced minimum module and the gap of two subspaces, some new existence characterization of the Moore-Penrose metric generalized inverse T^M of the perturbed operator T will be also given.展开更多
基金supported by the National Science Foundation (12001142)Harbin Normal University doctoral initiation Fund (XKB201812)supported by the Science Foundation Grant of Heilongjiang Province (LH2019A017)
文摘This article continues to study the research suggestions in depth made by M.Z.Nashed and G.F.Votruba in the journal"Bull.Amer.Math.Soc."in 1974.Concerned with the pricing of non-reachable"contingent claims"in an incomplete financial market,when constructing a specific bounded linear operator A:l_(1)^(n)→l_(2) from a non-reflexive Banach space l_(1)^(n) to a Hilbert space l_(2),the problem of non-reachable"contingent claims"pricing is reduced to researching the(single-valued)selection of the(set-valued)metric generalized inverse A■ of the operator A.In this paper,by using the Banach space structure theory and the generalized inverse method of operators,we obtain a bounded linear single-valued selection A^(σ)=A+of A■.
基金supported by the“China Natural Science Fund under grant 11871181”the“China Natural Science Fund under grant 11561053”。
文摘In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N(T)is an approximative compact Chebyshev subspace of X and R(T)is a 3-Chebyshev hyperplane,then there exists a homogeneous selection T^(σ)of T^(■)such that continuous points of T^(σ)and T^(■)are dense on Y.
基金the National Natural Science Foundation of China(No.19971023)the Heilongjiang Provincial Natural Science Foundation of China.
文摘The Moore-Penrose metric generalized inverse T+ of linear operator T in Banach space is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a linear operator in Banach Space, the Moore-Penrose metric generalized inverse T+ is usually homogeneous and nonlinear in general. By means of the methods of geometry of Banach Space, the necessary and sufficient conditions for existence, continuitv, linearity and minimum property of the Moore-Penrose metric generalized inverse T+ will be given, and some properties of T+ will be investigated in this paper.
基金supported by National Science Foundation of China (Grant No.11071051)Youth Science Foundation of Heilongjiang Province of China (Grant No.QC2009C73)+1 种基金the second author is supported by the State Committee for Scientific Research of Poland (Grant No.N N201 362236)the third author is supported by National Science Foundation of China (Grant No.11071051)
文摘In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessary and sufficient conditions for bounded linear operators T to have continuous homogeneous selections for the set-valued metric generalized inverses T~ are given. The results are an answer to the problem posed by Nashed and Votruba.
基金supported by National Science Foundation of China,Tian Yuan Special Foundation(GrantNo.11326111)Scientific Research Foundation of Heilongjiang Provincial Education Department(Grant No.12541232)+3 种基金Science Research Foundation of Harbin Normal University for Doctor(Grant No.KGB201223)supported by National Science Foundation of China(Grant No.11071051)Natural Science Foundation of Heilongjiang Province(Grant No.A201106)supported by NaturalScience Major Program of Higher Educational Science and Technology Program of Inner Mongolia(Grant No.NJZZ12231)
文摘In this paper, the perturbations of the Moore-Penrose metric generalized inverses of linear operators in Banach spaces are described. The Moore Penrose metric generalized inverse is homo- geneous and nonlinear in general, and the proofs of our results are different from linear generalized inverses. By using the quasi-additivity of Moore-Penrose metric generalized inverse and the theorem of generalized orthogonal decomposition, we show some error estimates of perturbations for the single- valued Moore-Penrose metric generalized inverses of bounded linear operators. Furthermore, by means of the continuity of the metric projection operator and the quasi-additivity of Moore-Penrose metric generalized inverse, an expression for Moore-Penrose metric generalized inverse is given.
基金Supported by National Natural Science Foundation of China (Grant No. 11071051)
文摘Let X, Y be Banach spaces and M be a linear subspace in X x Y = {{x,y}lx E X,y C Y}. We may view M as a multi-valued linear operator from X to Y by taking M(x) = {yl(x,y} C M}. In this paper, we give several criteria for a single-valued operator from Y to X to be the metric generalized inverse of the multi-valued linear operator M. The principal tool in this paper is also the generalized orthogonal decomposition theorem in Banach spaces.
基金supported by China Postdoctoral Science Foundation(Grant No.2015M582186)He’nan Institute of Science and Technology Postdoctoral Science Foundation(Grant No.5201029470209)
文摘Let X, Y be reflexive strictly convex Banach spaces, let T, δT : X → Y be bounded linear operators with closed range R(T). Put T= T + δT. In this paper, by using the concept of quasiadditivity and the so called generalized Neumman lemma, we will give some error estimates of the bounds of ||T^M||. By using a relation between the concepts of the reduced minimum module and the gap of two subspaces, some new existence characterization of the Moore-Penrose metric generalized inverse T^M of the perturbed operator T will be also given.