Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it...Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.展开更多
Intrusion Detection Systems(IDSs)have a great interest these days to discover complex attack events and protect the critical infrastructures of the Internet of Things(IoT)networks.Existing IDSs based on shallow and de...Intrusion Detection Systems(IDSs)have a great interest these days to discover complex attack events and protect the critical infrastructures of the Internet of Things(IoT)networks.Existing IDSs based on shallow and deep network architectures demand high computational resources and high volumes of data to establish an adaptive detection engine that discovers new families of attacks from the edge of IoT networks.However,attackers exploit network gateways at the edge using new attacking scenarios(i.e.,zero-day attacks),such as ransomware and Distributed Denial of Service(DDoS)attacks.This paper proposes new IDS based on Few-Shot Deep Learning,named CNN-IDS,which can automatically identify zero-day attacks from the edge of a network and protect its IoT systems.The proposed system comprises two-methodological stages:1)a filtered Information Gain method is to select the most useful features from network data,and 2)one-dimensional Convolutional Neural Network(CNN)algorithm is to recognize new attack types from a network’s edge.The proposed model is trained and validated using two datasets of the UNSW-NB15 and Bot-IoT.The experimental results showed that it enhances about a 3%detection rate and around a 3%–4%falsepositive rate with the UNSW-NB15 dataset and about an 8%detection rate using the BoT-IoT dataset.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
Objective To develop a few-shot learning(FSL) approach for classifying optical coherence tomography(OCT) images in patients with inherited retinal disorders(IRDs).Methods In this study, an FSL model based on a student...Objective To develop a few-shot learning(FSL) approach for classifying optical coherence tomography(OCT) images in patients with inherited retinal disorders(IRDs).Methods In this study, an FSL model based on a student–teacher learning framework was designed to classify images. 2,317 images from 189 participants were included. Of these, 1,126 images revealed IRDs, 533 were normal samples, and 658 were control samples.Results The FSL model achieved a total accuracy of 0.974–0.983, total sensitivity of 0.934–0.957, total specificity of 0.984–0.990, and total F1 score of 0.935–0.957, which were superior to the total accuracy of the baseline model of 0.943–0.954, total sensitivity of 0.866–0.886, total specificity of 0.962–0.971,and total F1 score of 0.859–0.885. The performance of most subclassifications also exhibited advantages. Moreover, the FSL model had a higher area under curves(AUC) of the receiver operating characteristic(ROC) curves in most subclassifications.Conclusion This study demonstrates the effective use of the FSL model for the classification of OCT images from patients with IRDs, normal, and control participants with a smaller volume of data. The general principle and similar network architectures can also be applied to other retinal diseases with a low prevalence.展开更多
Deep Convolution Neural Networks(DCNNs)can capture discriminative features from large datasets.However,how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in the d...Deep Convolution Neural Networks(DCNNs)can capture discriminative features from large datasets.However,how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in the dynamically changing world,e.g.,classifying newly discovered fish species,remains an open problem.We address an even more challenging and realistic setting of this problem where new class samples are insufficient,i.e.,Few-Shot Class-Incremental Learning(FSCIL).Current FSCIL methods augment the training data to alleviate the overfitting of novel classes.By contrast,we propose Filter Bank Networks(FBNs)that augment the learnable filters to capture fine-detailed features for adapting to future new classes.In the forward pass,FBNs augment each convolutional filter to a virtual filter bank containing the canonical one,i.e.,itself,and multiple transformed versions.During back-propagation,FBNs explicitly stimulate fine-detailed features to emerge and collectively align all gradients of each filter bank to learn the canonical one.FBNs capture pattern variants that do not yet exist in the pretraining session,thus making it easy to incorporate new classes in the incremental learning phase.Moreover,FBNs introduce model-level prior knowledge to efficiently utilize the limited few-shot data.Extensive experiments on MNIST,CIFAR100,CUB200,andMini-ImageNet datasets show that FBNs consistently outperformthe baseline by a significantmargin,reporting new state-of-the-art FSCIL results.In addition,we contribute a challenging FSCIL benchmark,Fishshot1K,which contains 8261 underwater images covering 1000 ocean fish species.The code is included in the supplementary materials.展开更多
Few-shot learning is becoming more and more popular in many fields,especially in the computer vision field.This inspires us to introduce few-shot learning to the genomic field,which faces a typical few-shot problem be...Few-shot learning is becoming more and more popular in many fields,especially in the computer vision field.This inspires us to introduce few-shot learning to the genomic field,which faces a typical few-shot problem because some tasks only have a limited number of samples with high-dimensions.The goal of this study was to investigate the few-shot disease sub-type prediction problem and identify patient subgroups through training on small data.Accurate disease subtype classification allows clinicians to efficiently deliver investigations and interventions in clinical practice.We propose the SW-Net,which simulates the clinical process of extracting the shared knowledge from a range of interrelated tasks and generalizes it to unseen data.Our model is built upon a simple baseline,and we modified it for genomic data.Supportbased initialization for the classifier and transductive fine-tuning techniques were applied in our model to improve prediction accuracy,and an Entropy regularization term on the query set was appended to reduce over-fitting.Moreover,to address the high dimension and high noise issue,we future extended a feature selection module to adaptively select important features and a sample weighting module to prioritize high-confidence samples.Experiments on simulated data and The Cancer Genome Atlas meta-dataset show that our new baseline model gets higher prediction accuracy compared to other competing algorithms.展开更多
At present,deep learning has been well applied in many fields.However,due to the high complexity of hypothesis space,numerous training samples are usually required to ensure the reliability of minimizing experience ri...At present,deep learning has been well applied in many fields.However,due to the high complexity of hypothesis space,numerous training samples are usually required to ensure the reliability of minimizing experience risk.Therefore,training a classifier with a small number of training examples is a challenging task.From a biological point of view,based on the assumption that rich prior knowledge and analogical association should enable human beings to quickly distinguish novel things from a few or even one example,we proposed a dynamic analogical association algorithm to make the model use only a few labeled samples for classification.To be specific,the algorithm search for knowledge structures similar to existing tasks in prior knowledge based on manifold matching,and combine sampling distributions to generate offsets instead of two sample points,thereby ensuring high confidence and significant contribution to the classification.The comparative results on two common benchmark datasets substantiate the superiority of the proposed method compared to existing data generation approaches for few-shot learning,and the effectiveness of the algorithm has been proved through ablation experiments.展开更多
Numerous meta-learning methods focus on the few-shot learning issue,yet most of them assume that various tasks have a shared embedding space,so the generalization ability of the trained model is limited.In order to so...Numerous meta-learning methods focus on the few-shot learning issue,yet most of them assume that various tasks have a shared embedding space,so the generalization ability of the trained model is limited.In order to solve the aforementioned problem,a task-adaptive meta-learning method based on graph neural network(TAGN) is proposed in this paper,where the characterization ability of the original feature extraction network is ameliorated and the classification accuracy is remarkably improved.Firstly,a task-adaptation module based on the self-attention mechanism is employed,where the generalization ability of the model is enhanced on the new task.Secondly,images are classified in non-Euclidean domain,where the disadvantages of poor adaptability of the traditional distance function are overcome.A large number of experiments are conducted and the results show that the proposed methodology has a better performance than traditional task-independent classification methods on two real-word datasets.展开更多
Recent advances in OCR show that end-to-end(E2E)training pipelines including detection and identification can achieve the best results.However,many existing methods usually focus on case insensitive English characters...Recent advances in OCR show that end-to-end(E2E)training pipelines including detection and identification can achieve the best results.However,many existing methods usually focus on case insensitive English characters.In this paper,we apply an E2E approach,the multiplex multilingual mask TextSpotter,which performs script recognition at the word level and uses different recognition headers to process different scripts while maintaining uniform loss,thus optimizing script recognition and multiple recognition headers simultaneously.Experiments show that this method is superior to the single-head model with similar number of parameters in endto-end identification tasks.展开更多
Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not ...Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not meet the requirement.This leads to the so-called few-shot learning(FSL)problem,which requires the model rapidly generalize to new tasks that containing only a few labeled samples.In this paper,we proposed a new deep model,called deep convolutional meta-learning networks,to address the low performance of generalization under limited data for bearing fault diagnosis.The essential of our approach is to learn a base model from the multiple learning tasks using a support dataset and finetune the learnt parameters using few-shot tasks before it can adapt to the new learning task based on limited training data.The proposed method was compared to several FSL methods,including methods with and without pre-training the embedding mapping,and methods with finetuning the classifier or the whole model by utilizing the few-shot data from the target domain.The comparisons are carried out on 1-shot and 10-shot tasks using the Case Western Reserve University bearing dataset and a cylindrical roller bearing dataset.The experimental result illustrates that our method has good performance on the bearing fault diagnosis across various few-shot conditions.In addition,we found that the pretraining process does not always improve the prediction accuracy.展开更多
Target recognition based on deep learning relies on a large quantity of samples,but in some specific remote sensing scenes,the samples are very rare.Currently,few-shot learning can obtain high-performance target class...Target recognition based on deep learning relies on a large quantity of samples,but in some specific remote sensing scenes,the samples are very rare.Currently,few-shot learning can obtain high-performance target classification models using only a few samples,but most researches are based on the natural scene.Therefore,this paper proposes a metric-based few-shot classification technology in remote sensing.First,we constructed a dataset(RSD-FSC)for few-shot classification in remote sensing,which contained 21 classes typical target sample slices of remote sensing images.Second,based on metric learning,a k-nearest neighbor classification network is proposed,to find multiple training samples similar to the testing target,and then the similarity between the testing target and multiple similar samples is calculated to classify the testing target.Finally,the 5-way 1-shot,5-way 5-shot and 5-way 10-shot experiments are conducted to improve the generalization of the model on few-shot classification tasks.The experimental results show that for the newly emerged classes few-shot samples,when the number of training samples is 1,5 and 10,the average accuracy of target recognition can reach 59.134%,82.553%and 87.796%,respectively.It demonstrates that our proposed method can resolve few-shot classification in remote sensing image and perform better than other few-shot classification methods.展开更多
We propose to use a Few-Shot Learning(FSL)method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data.Recently,artificial neural network(ANN)demonstrate...We propose to use a Few-Shot Learning(FSL)method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data.Recently,artificial neural network(ANN)demonstrates great advantages for seismic inversion because of its powerful feature extraction and parameter learning ability.Hence,ANN method could provide a high resolution inversion result that are critical for reservoir characterization.However,the ANN approach requires plenty of labeled samples for training in order to obtain a satisfactory result.For the common problem of scarce samples in the ANN seismic inversion,we create a novel pre-stack seismic inversion method that takes advantage of the FSL.The results of conventional inversion are used as the auxiliary dataset for ANN based on FSL,while the well log is regarded the scarce training dataset.According to the characteristics of seismic inversion(large amount and high dimensional),we construct an arch network(A-Net)architecture to implement this method.An example shows that this method can improve the accuracy and resolution of inversion results.展开更多
In recent years,machine learning has made great progress in intrusion detection,network protection,anomaly detection,and other issues in cyberspace.However,these traditional machine learning algorithms usually require...In recent years,machine learning has made great progress in intrusion detection,network protection,anomaly detection,and other issues in cyberspace.However,these traditional machine learning algorithms usually require a lot of data to learn and have a low recognition rate for unknown attacks.Among them,“one-shot learning”,“few-shot learning”,and“zero-shot learning”are challenges that cannot be ignored for traditional machine learning.The more intractable problem in cyberspace security is the changeable attack mode.When a new attack mode appears,there are few or even zero samples that can be learned.Meta-learning comes from imitating human problem-solving methods as humans can quickly learn unknown things based on their existing knowledge when learning.Its purpose is to quickly obtain a model with high accuracy and strong generalization through less data training.This article first divides the meta-learning model into five research directions based on different principles of use.They are model-based,metric-based,optimization-based,online-learning-based,or stacked ensemble-based.Then,the current problems in the field of cyberspace security are categorized into three branches:cyber security,information security,and artificial intelligence security according to different perspectives.Then,the application research results of various meta-learning models on these three branches are reviewed.At the same time,based on the characteristics of strong generalization,evolution,and scalability of meta-learning,we contrast and summarize its advantages in solving problems.Finally,the prospect of future deep application of meta-learning in the field of cyberspace security is summarized.展开更多
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie...To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods.展开更多
With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recogni...With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods.展开更多
In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract i...In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively.展开更多
The automatic colorization of anime line drawings is a challenging problem in production pipelines.Recent advances in deep neural networks have addressed this problem;however,collectingmany images of colorization targ...The automatic colorization of anime line drawings is a challenging problem in production pipelines.Recent advances in deep neural networks have addressed this problem;however,collectingmany images of colorization targets in novel anime work before the colorization process starts leads to chicken-and-egg problems and has become an obstacle to using them in production pipelines.To overcome this obstacle,we propose a new patch-based learning method for few-shot anime-style colorization.The learning method adopts an efficient patch sampling technique with position embedding according to the characteristics of anime line drawings.We also present a continuous learning strategy that continuously updates our colorization model using new samples colorized by human artists.The advantage of our method is that it can learn our colorization model from scratch or pre-trained weights using only a few pre-and post-colorized line drawings that are created by artists in their usual colorization work.Therefore,our method can be easily incorporated within existing production pipelines.We quantitatively demonstrate that our colorizationmethod outperforms state-of-the-art methods.展开更多
Open-source licenses can promote the development of machine learning by allowing others to access,modify,and redistribute the training dataset.However,not all open-source licenses may be appropriate for data sharing,a...Open-source licenses can promote the development of machine learning by allowing others to access,modify,and redistribute the training dataset.However,not all open-source licenses may be appropriate for data sharing,as some may not provide adequate protections for sensitive or personal information such as social network data.Additionally,some data may be subject to legal or regulatory restrictions that limit its sharing,regardless of the licensing model used.Hence,obtaining large amounts of labeled data can be difficult,time-consuming,or expensive in many real-world scenarios.Few-shot graph classification,as one application of meta-learning in supervised graph learning,aims to classify unseen graph types by only using a small amount of labeled data.However,the current graph neural network methods lack full usage of graph structures on molecular graphs and social network datasets.Since structural features are known to correlate with molecular properties in chemistry,structure information tends to be ignored with sufficient property information provided.Nevertheless,the common binary classification task of chemical compounds is unsuitable in the few-shot setting requiring novel labels.Hence,this paper focuses on the graph classification tasks of a social network,whose complex topology has an uncertain relationship with its nodes'attributes.With two multi-class graph datasets with large node-attribute dimensions constructed to facilitate the research,we propose a novel learning framework that integrates both meta-learning and contrastive learning to enhance the utilization of graph topological information.Extensive experiments demonstrate the competitive performance of our framework respective to other state-of-the-art methods.展开更多
Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learn...Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches.展开更多
Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few l...Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few labeled samples,but the performance is often unsatisfactory due to the scarcity of samples.We believe that the main reasons that restrict the performance of few-shot detectors are:(1)the positive samples is scarce,and(2)the quality of positive samples is low.Therefore,we put forward a novel few-shot object detector based on YOLOv4,starting from both improving the quantity and quality of positive samples.First,we design a hybrid multivariate positive sample augmentation(HMPSA)module to amplify the quantity of positive samples and increase positive sample diversity while suppressing negative samples.Then,we design a selective non-local fusion attention(SNFA)module to help the detector better learn the target features and improve the feature quality of positive samples.Finally,we optimize the loss function to make it more suitable for the task of FSOD.Experimental results on PASCAL VOC and MS COCO demonstrate that our designed few-shot object detector has competitive performance with other state-of-the-art detectors.展开更多
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404.
文摘Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.
基金This work has been supported by the Australian Research Data Common(ARDC),project code–RG192500.
文摘Intrusion Detection Systems(IDSs)have a great interest these days to discover complex attack events and protect the critical infrastructures of the Internet of Things(IoT)networks.Existing IDSs based on shallow and deep network architectures demand high computational resources and high volumes of data to establish an adaptive detection engine that discovers new families of attacks from the edge of IoT networks.However,attackers exploit network gateways at the edge using new attacking scenarios(i.e.,zero-day attacks),such as ransomware and Distributed Denial of Service(DDoS)attacks.This paper proposes new IDS based on Few-Shot Deep Learning,named CNN-IDS,which can automatically identify zero-day attacks from the edge of a network and protect its IoT systems.The proposed system comprises two-methodological stages:1)a filtered Information Gain method is to select the most useful features from network data,and 2)one-dimensional Convolutional Neural Network(CNN)algorithm is to recognize new attack types from a network’s edge.The proposed model is trained and validated using two datasets of the UNSW-NB15 and Bot-IoT.The experimental results showed that it enhances about a 3%detection rate and around a 3%–4%falsepositive rate with the UNSW-NB15 dataset and about an 8%detection rate using the BoT-IoT dataset.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金supported by National Natural Science Foundation of China [No.82171073]。
文摘Objective To develop a few-shot learning(FSL) approach for classifying optical coherence tomography(OCT) images in patients with inherited retinal disorders(IRDs).Methods In this study, an FSL model based on a student–teacher learning framework was designed to classify images. 2,317 images from 189 participants were included. Of these, 1,126 images revealed IRDs, 533 were normal samples, and 658 were control samples.Results The FSL model achieved a total accuracy of 0.974–0.983, total sensitivity of 0.934–0.957, total specificity of 0.984–0.990, and total F1 score of 0.935–0.957, which were superior to the total accuracy of the baseline model of 0.943–0.954, total sensitivity of 0.866–0.886, total specificity of 0.962–0.971,and total F1 score of 0.859–0.885. The performance of most subclassifications also exhibited advantages. Moreover, the FSL model had a higher area under curves(AUC) of the receiver operating characteristic(ROC) curves in most subclassifications.Conclusion This study demonstrates the effective use of the FSL model for the classification of OCT images from patients with IRDs, normal, and control participants with a smaller volume of data. The general principle and similar network architectures can also be applied to other retinal diseases with a low prevalence.
基金support from the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA27000000.
文摘Deep Convolution Neural Networks(DCNNs)can capture discriminative features from large datasets.However,how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in the dynamically changing world,e.g.,classifying newly discovered fish species,remains an open problem.We address an even more challenging and realistic setting of this problem where new class samples are insufficient,i.e.,Few-Shot Class-Incremental Learning(FSCIL).Current FSCIL methods augment the training data to alleviate the overfitting of novel classes.By contrast,we propose Filter Bank Networks(FBNs)that augment the learnable filters to capture fine-detailed features for adapting to future new classes.In the forward pass,FBNs augment each convolutional filter to a virtual filter bank containing the canonical one,i.e.,itself,and multiple transformed versions.During back-propagation,FBNs explicitly stimulate fine-detailed features to emerge and collectively align all gradients of each filter bank to learn the canonical one.FBNs capture pattern variants that do not yet exist in the pretraining session,thus making it easy to incorporate new classes in the incremental learning phase.Moreover,FBNs introduce model-level prior knowledge to efficiently utilize the limited few-shot data.Extensive experiments on MNIST,CIFAR100,CUB200,andMini-ImageNet datasets show that FBNs consistently outperformthe baseline by a significantmargin,reporting new state-of-the-art FSCIL results.In addition,we contribute a challenging FSCIL benchmark,Fishshot1K,which contains 8261 underwater images covering 1000 ocean fish species.The code is included in the supplementary materials.
基金supported by the Macao Science and Technology Development Funds Grands No.0158/2019/A3 from the Macao Special Administrative Region of the People’s Republic of China.
文摘Few-shot learning is becoming more and more popular in many fields,especially in the computer vision field.This inspires us to introduce few-shot learning to the genomic field,which faces a typical few-shot problem because some tasks only have a limited number of samples with high-dimensions.The goal of this study was to investigate the few-shot disease sub-type prediction problem and identify patient subgroups through training on small data.Accurate disease subtype classification allows clinicians to efficiently deliver investigations and interventions in clinical practice.We propose the SW-Net,which simulates the clinical process of extracting the shared knowledge from a range of interrelated tasks and generalizes it to unseen data.Our model is built upon a simple baseline,and we modified it for genomic data.Supportbased initialization for the classifier and transductive fine-tuning techniques were applied in our model to improve prediction accuracy,and an Entropy regularization term on the query set was appended to reduce over-fitting.Moreover,to address the high dimension and high noise issue,we future extended a feature selection module to adaptively select important features and a sample weighting module to prioritize high-confidence samples.Experiments on simulated data and The Cancer Genome Atlas meta-dataset show that our new baseline model gets higher prediction accuracy compared to other competing algorithms.
基金This work was supported by The National Natural Science Foundation of China(No.61402537)Sichuan Science and Technology Program(Nos.2019ZDZX0006,2020YFQ0056)+1 种基金the West Light Foundation of Chinese Academy of Sciences(201899)the Talents by Sichuan provincial Party Committee Organization Department,and Science and Technology Service Network Initiative(KFJ-STS-QYZD-2021-21-001).
文摘At present,deep learning has been well applied in many fields.However,due to the high complexity of hypothesis space,numerous training samples are usually required to ensure the reliability of minimizing experience risk.Therefore,training a classifier with a small number of training examples is a challenging task.From a biological point of view,based on the assumption that rich prior knowledge and analogical association should enable human beings to quickly distinguish novel things from a few or even one example,we proposed a dynamic analogical association algorithm to make the model use only a few labeled samples for classification.To be specific,the algorithm search for knowledge structures similar to existing tasks in prior knowledge based on manifold matching,and combine sampling distributions to generate offsets instead of two sample points,thereby ensuring high confidence and significant contribution to the classification.The comparative results on two common benchmark datasets substantiate the superiority of the proposed method compared to existing data generation approaches for few-shot learning,and the effectiveness of the algorithm has been proved through ablation experiments.
基金Supported by the National High Technology Research and Development Program of China(20-H863-05-XXX-XX)the National Natural Science Foundation of China(61171131)+1 种基金Shandong Province Key Research and Development Program(YD01033)the China Scholarship Council Program(201608370049)。
文摘Numerous meta-learning methods focus on the few-shot learning issue,yet most of them assume that various tasks have a shared embedding space,so the generalization ability of the trained model is limited.In order to solve the aforementioned problem,a task-adaptive meta-learning method based on graph neural network(TAGN) is proposed in this paper,where the characterization ability of the original feature extraction network is ameliorated and the classification accuracy is remarkably improved.Firstly,a task-adaptation module based on the self-attention mechanism is employed,where the generalization ability of the model is enhanced on the new task.Secondly,images are classified in non-Euclidean domain,where the disadvantages of poor adaptability of the traditional distance function are overcome.A large number of experiments are conducted and the results show that the proposed methodology has a better performance than traditional task-independent classification methods on two real-word datasets.
基金supported by the Advanced Training Project of the Professional Leaders in Jiangsu Higher Vocational Colleges (2020GRFX006).
文摘Recent advances in OCR show that end-to-end(E2E)training pipelines including detection and identification can achieve the best results.However,many existing methods usually focus on case insensitive English characters.In this paper,we apply an E2E approach,the multiplex multilingual mask TextSpotter,which performs script recognition at the word level and uses different recognition headers to process different scripts while maintaining uniform loss,thus optimizing script recognition and multiple recognition headers simultaneously.Experiments show that this method is superior to the single-head model with similar number of parameters in endto-end identification tasks.
基金This research was funded by RECLAIM project“Remanufacturing and Refurbishment of Large Industrial Equipment”and received funding from the European Commission Horizon 2020 research and innovation program under Grant Agreement No.869884The authors also acknowledge the support of The Efficiency and Performance Engineering Network International Collaboration Fund Award 2022(TEPEN-ICF 2022)project“Intelligent Fault Diagnosis Method and System with Few-Shot Learning Technique under Small Sample Data Condition”.
文摘Machine learning,especially deep learning,has been highly successful in data-intensive applications;however,the performance of these models will drop significantly when the amount of the training data amount does not meet the requirement.This leads to the so-called few-shot learning(FSL)problem,which requires the model rapidly generalize to new tasks that containing only a few labeled samples.In this paper,we proposed a new deep model,called deep convolutional meta-learning networks,to address the low performance of generalization under limited data for bearing fault diagnosis.The essential of our approach is to learn a base model from the multiple learning tasks using a support dataset and finetune the learnt parameters using few-shot tasks before it can adapt to the new learning task based on limited training data.The proposed method was compared to several FSL methods,including methods with and without pre-training the embedding mapping,and methods with finetuning the classifier or the whole model by utilizing the few-shot data from the target domain.The comparisons are carried out on 1-shot and 10-shot tasks using the Case Western Reserve University bearing dataset and a cylindrical roller bearing dataset.The experimental result illustrates that our method has good performance on the bearing fault diagnosis across various few-shot conditions.In addition,we found that the pretraining process does not always improve the prediction accuracy.
基金This work was supported in part by the CETC key laboratory of Aerospace Information Applications under Grant No.SXX19629X060.
文摘Target recognition based on deep learning relies on a large quantity of samples,but in some specific remote sensing scenes,the samples are very rare.Currently,few-shot learning can obtain high-performance target classification models using only a few samples,but most researches are based on the natural scene.Therefore,this paper proposes a metric-based few-shot classification technology in remote sensing.First,we constructed a dataset(RSD-FSC)for few-shot classification in remote sensing,which contained 21 classes typical target sample slices of remote sensing images.Second,based on metric learning,a k-nearest neighbor classification network is proposed,to find multiple training samples similar to the testing target,and then the similarity between the testing target and multiple similar samples is calculated to classify the testing target.Finally,the 5-way 1-shot,5-way 5-shot and 5-way 10-shot experiments are conducted to improve the generalization of the model on few-shot classification tasks.The experimental results show that for the newly emerged classes few-shot samples,when the number of training samples is 1,5 and 10,the average accuracy of target recognition can reach 59.134%,82.553%and 87.796%,respectively.It demonstrates that our proposed method can resolve few-shot classification in remote sensing image and perform better than other few-shot classification methods.
基金Wupport from the National Natural Science Foundation of China(Grant No.42130812,42174151,and 41804126).
文摘We propose to use a Few-Shot Learning(FSL)method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data.Recently,artificial neural network(ANN)demonstrates great advantages for seismic inversion because of its powerful feature extraction and parameter learning ability.Hence,ANN method could provide a high resolution inversion result that are critical for reservoir characterization.However,the ANN approach requires plenty of labeled samples for training in order to obtain a satisfactory result.For the common problem of scarce samples in the ANN seismic inversion,we create a novel pre-stack seismic inversion method that takes advantage of the FSL.The results of conventional inversion are used as the auxiliary dataset for ANN based on FSL,while the well log is regarded the scarce training dataset.According to the characteristics of seismic inversion(large amount and high dimensional),we construct an arch network(A-Net)architecture to implement this method.An example shows that this method can improve the accuracy and resolution of inversion results.
基金supported by Hebei Province Natural Science Fund for Distinguished Young Scholars (NO.E2020209082).
文摘In recent years,machine learning has made great progress in intrusion detection,network protection,anomaly detection,and other issues in cyberspace.However,these traditional machine learning algorithms usually require a lot of data to learn and have a low recognition rate for unknown attacks.Among them,“one-shot learning”,“few-shot learning”,and“zero-shot learning”are challenges that cannot be ignored for traditional machine learning.The more intractable problem in cyberspace security is the changeable attack mode.When a new attack mode appears,there are few or even zero samples that can be learned.Meta-learning comes from imitating human problem-solving methods as humans can quickly learn unknown things based on their existing knowledge when learning.Its purpose is to quickly obtain a model with high accuracy and strong generalization through less data training.This article first divides the meta-learning model into five research directions based on different principles of use.They are model-based,metric-based,optimization-based,online-learning-based,or stacked ensemble-based.Then,the current problems in the field of cyberspace security are categorized into three branches:cyber security,information security,and artificial intelligence security according to different perspectives.Then,the application research results of various meta-learning models on these three branches are reviewed.At the same time,based on the characteristics of strong generalization,evolution,and scalability of meta-learning,we contrast and summarize its advantages in solving problems.Finally,the prospect of future deep application of meta-learning in the field of cyberspace security is summarized.
基金This work is supported by the National Natural Science Foundation of China under Grant 52274057,52074340 and 51874335the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008+2 种基金the Major Scientific and Technological Projects of CNOOC under Grant CCL2022RCPS0397RSNthe Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002111 Project under Grant B08028.
文摘To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods.
基金supported in part by the National Natural Science Foundation of China under Grant No.62171334,No.11973077 and No.12003061。
文摘With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods.
基金the Scientific Research Foundation of Liaoning Provincial Department of Education(No.LJKZ0139)the Program for Liaoning Excellent Talents in University(No.LR15045).
文摘In order to improve the models capability in expressing features during few-shot learning,a multi-scale features prototypical network(MS-PN)algorithm is proposed.The metric learning algo-rithm is employed to extract image features and project them into a feature space,thus evaluating the similarity between samples based on their relative distances within the metric space.To sufficiently extract feature information from limited sample data and mitigate the impact of constrained data vol-ume,a multi-scale feature extraction network is presented to capture data features at various scales during the process of image feature extraction.Additionally,the position of the prototype is fine-tuned by assigning weights to data points to mitigate the influence of outliers on the experiment.The loss function integrates contrastive loss and label-smoothing to bring similar data points closer and separate dissimilar data points within the metric space.Experimental evaluations are conducted on small-sample datasets mini-ImageNet and CUB200-2011.The method in this paper can achieve higher classification accuracy.Specifically,in the 5-way 1-shot experiment,classification accuracy reaches 50.13%and 66.79%respectively on these two datasets.Moreover,in the 5-way 5-shot ex-periment,accuracy of 66.79%and 85.91%are observed,respectively.
文摘The automatic colorization of anime line drawings is a challenging problem in production pipelines.Recent advances in deep neural networks have addressed this problem;however,collectingmany images of colorization targets in novel anime work before the colorization process starts leads to chicken-and-egg problems and has become an obstacle to using them in production pipelines.To overcome this obstacle,we propose a new patch-based learning method for few-shot anime-style colorization.The learning method adopts an efficient patch sampling technique with position embedding according to the characteristics of anime line drawings.We also present a continuous learning strategy that continuously updates our colorization model using new samples colorized by human artists.The advantage of our method is that it can learn our colorization model from scratch or pre-trained weights using only a few pre-and post-colorized line drawings that are created by artists in their usual colorization work.Therefore,our method can be easily incorporated within existing production pipelines.We quantitatively demonstrate that our colorizationmethod outperforms state-of-the-art methods.
基金supported by SW Copyright Ecosystem R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture,Sports,and Tourism in 2023(No.RS-2023-00224818).
文摘Open-source licenses can promote the development of machine learning by allowing others to access,modify,and redistribute the training dataset.However,not all open-source licenses may be appropriate for data sharing,as some may not provide adequate protections for sensitive or personal information such as social network data.Additionally,some data may be subject to legal or regulatory restrictions that limit its sharing,regardless of the licensing model used.Hence,obtaining large amounts of labeled data can be difficult,time-consuming,or expensive in many real-world scenarios.Few-shot graph classification,as one application of meta-learning in supervised graph learning,aims to classify unseen graph types by only using a small amount of labeled data.However,the current graph neural network methods lack full usage of graph structures on molecular graphs and social network datasets.Since structural features are known to correlate with molecular properties in chemistry,structure information tends to be ignored with sufficient property information provided.Nevertheless,the common binary classification task of chemical compounds is unsuitable in the few-shot setting requiring novel labels.Hence,this paper focuses on the graph classification tasks of a social network,whose complex topology has an uncertain relationship with its nodes'attributes.With two multi-class graph datasets with large node-attribute dimensions constructed to facilitate the research,we propose a novel learning framework that integrates both meta-learning and contrastive learning to enhance the utilization of graph topological information.Extensive experiments demonstrate the competitive performance of our framework respective to other state-of-the-art methods.
基金The work was supported by the National Key R&D Program of China(Grant No.2020YFC1511601)Fundamental Research Funds for the Central Universities(Grant No.2019SHFWLC01).
文摘Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches.
基金the China National Key Research and Development Program(Grant No.2016YFC0802904)National Natural Science Foundation of China(Grant No.61671470)62nd batch of funded projects of China Postdoctoral Science Foundation(Grant No.2017M623423)to provide fund for conducting experiments。
文摘Traditional object detectors based on deep learning rely on plenty of labeled samples,which are expensive to obtain.Few-shot object detection(FSOD)attempts to solve this problem,learning detection objects from a few labeled samples,but the performance is often unsatisfactory due to the scarcity of samples.We believe that the main reasons that restrict the performance of few-shot detectors are:(1)the positive samples is scarce,and(2)the quality of positive samples is low.Therefore,we put forward a novel few-shot object detector based on YOLOv4,starting from both improving the quantity and quality of positive samples.First,we design a hybrid multivariate positive sample augmentation(HMPSA)module to amplify the quantity of positive samples and increase positive sample diversity while suppressing negative samples.Then,we design a selective non-local fusion attention(SNFA)module to help the detector better learn the target features and improve the feature quality of positive samples.Finally,we optimize the loss function to make it more suitable for the task of FSOD.Experimental results on PASCAL VOC and MS COCO demonstrate that our designed few-shot object detector has competitive performance with other state-of-the-art detectors.