The existing early-warning system in metro construction are generally based on traditional single-sensor data and simple analytic model, which makes it difficult to deal with the complex and comprehensive environment ...The existing early-warning system in metro construction are generally based on traditional single-sensor data and simple analytic model, which makes it difficult to deal with the complex and comprehensive environment in metro construction. In this paper, the framework of early-warning threshold for metro construction collapse risk based on D-S evidence theory and rough set is built. By combining the primary data fusion collected based on rough set with the secondary data fusion which is based on D-S evidence theory, the integration of multiple information in metro construction is realized and the risk assessment methods are optimized. A case trial based on Hangzhou metro construction collapse accident is also carried out to exemplify the framework. The empirical analysis guarantees the completeness and independence of the prediction information, and realizes the dynamic prediction of the variation trend of metro construction collapse risk.展开更多
This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Da...This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Dalian,China.Due to the large error between the initial geological exploration data and real strata,the project construction is extremely difficult.In view of the current situation regarding the project,a quantitative method for evaluating the tunneling efficiency was proposed using cutterhead rotation(R),advance speed(S),total thrust(F)and torque(T).A total of 80 datasets with three input parameters and one output variable(F or T)were collected from this project,and a prediction framework based gray system model was established.Based on the prediction model,five prediction schemes were set up.Through error analysis,the optimal prediction scheme was obtained from the five schemes.The parametric investigation performed indicates that the relationships between F and the three input variables in the gray system model harmonize with the theoretical explanation.The case shows that the shield tunneling performance and efficiency are improved by the tunneling parameter prediction model based on the gray system model.展开更多
As urbanization accelerates,the metro has become an important means of transportation.Considering the safety problems caused by metro construction,ground settlement needs to be monitored and predicted regularly,especi...As urbanization accelerates,the metro has become an important means of transportation.Considering the safety problems caused by metro construction,ground settlement needs to be monitored and predicted regularly,especially when a new metro line crosses an existing one.In this paper,we propose a settlement-probability prediction model with a Bayesian emulator(BE)based on the Gaussian prior(GP),that is,a GPBE.In addition,considering the distortion characteristics of monitoring data,the data is denoised using wavelet decomposition(WD),so the final prediction model is WD-GPBE.In particular,the effects of different prediction ratios and moving windows on prediction performance are explored,and the optimal number of moving windows is determined.In addition,the predicted value for GPBE based on the original data is compared with the predicted value for WD-GPBE based on the denoised data.One year of settlement-monitoring data collected by a structural health monitoring(SHM)system installed on the Nanjing Metro is used to demonstrate the effectiveness of WDGPBE and GPBE for predicting settlement.展开更多
基金Supported by the National Natural Science Foundation of China(71603284)the Humanity and Social Science Research Foundation of Ministry of Education(16YJC630068)
文摘The existing early-warning system in metro construction are generally based on traditional single-sensor data and simple analytic model, which makes it difficult to deal with the complex and comprehensive environment in metro construction. In this paper, the framework of early-warning threshold for metro construction collapse risk based on D-S evidence theory and rough set is built. By combining the primary data fusion collected based on rough set with the secondary data fusion which is based on D-S evidence theory, the integration of multiple information in metro construction is realized and the risk assessment methods are optimized. A case trial based on Hangzhou metro construction collapse accident is also carried out to exemplify the framework. The empirical analysis guarantees the completeness and independence of the prediction information, and realizes the dynamic prediction of the variation trend of metro construction collapse risk.
基金support by the National Natural Science Foundation of China(Grant Nos.52108377,52090084,and 51938008).
文摘This research explores the potential for the evaluation and prediction of earth pressure balance shield performance based on a gray system model.The research focuses on a shield tunnel excavated for Metro Line 2 in Dalian,China.Due to the large error between the initial geological exploration data and real strata,the project construction is extremely difficult.In view of the current situation regarding the project,a quantitative method for evaluating the tunneling efficiency was proposed using cutterhead rotation(R),advance speed(S),total thrust(F)and torque(T).A total of 80 datasets with three input parameters and one output variable(F or T)were collected from this project,and a prediction framework based gray system model was established.Based on the prediction model,five prediction schemes were set up.Through error analysis,the optimal prediction scheme was obtained from the five schemes.The parametric investigation performed indicates that the relationships between F and the three input variables in the gray system model harmonize with the theoretical explanation.The case shows that the shield tunneling performance and efficiency are improved by the tunneling parameter prediction model based on the gray system model.
基金the Humanities and Social Sciences Research Project of Ministry of Education of China(No.23YJCZH037)the Educational Science Planning Project of Zhejiang Province(No.2023SCG222)+3 种基金the Foundation of the State Key Laboratory of Mountain Bridge and Tunnel Engi‐neering of China(No.SKLBT-2210)the National Key R&D Program of China(No.2022YFC3802301)the National Natural Science Foundation of China(No.52178306)the Scientific Research Project of Zhejiang Provincial Department of Educa-tion(No.Y202248682),China.
文摘As urbanization accelerates,the metro has become an important means of transportation.Considering the safety problems caused by metro construction,ground settlement needs to be monitored and predicted regularly,especially when a new metro line crosses an existing one.In this paper,we propose a settlement-probability prediction model with a Bayesian emulator(BE)based on the Gaussian prior(GP),that is,a GPBE.In addition,considering the distortion characteristics of monitoring data,the data is denoised using wavelet decomposition(WD),so the final prediction model is WD-GPBE.In particular,the effects of different prediction ratios and moving windows on prediction performance are explored,and the optimal number of moving windows is determined.In addition,the predicted value for GPBE based on the original data is compared with the predicted value for WD-GPBE based on the denoised data.One year of settlement-monitoring data collected by a structural health monitoring(SHM)system installed on the Nanjing Metro is used to demonstrate the effectiveness of WDGPBE and GPBE for predicting settlement.