Mg-Al spinel is synthesized by using industrial waste-residue and basic magnesium carbonate in the aluminum factory as the main raw materials. The influence of sintering temperature on crystalline structure and micros...Mg-Al spinel is synthesized by using industrial waste-residue and basic magnesium carbonate in the aluminum factory as the main raw materials. The influence of sintering temperature on crystalline structure and microstructure of Mg-Al spinel has been mainly discussed. The crystalline structure of sample is characterized by using XRD, SEM and relevant analytical software. The experimental results show that compared to the conventional synthetic method, the application of waste aluminum slag as the raw material can greatly decrease the synthetic tem-perature. The content of Mg-Al spinel first increases and then decreases with the rise of sintering temperature, and its purity can reach as high as 96wt% at 1550 ℃, which is therefore determined to be the optimum synthetic temperature. SEM observations demonstrate that as the rise of sintering temperature, the grain of Mg-Al spinel grows up obviously with typical octahedral characteristic appearance.展开更多
Mg-Al spinel is synthesized by using industrial waste-residue and basic magnesium carbonate in the aluminum factory as the main raw materials. The influence of V2O5 and Fe2O3 mineralizers on the structure, cell parame...Mg-Al spinel is synthesized by using industrial waste-residue and basic magnesium carbonate in the aluminum factory as the main raw materials. The influence of V2O5 and Fe2O3 mineralizers on the structure, cell parameters and microscopic morphology of synthesized Mg-Al spinel has been discussed. The Mg-Al spinel is characterized by using XRD, SEM and relevant analytical software, such as Philips plus, Rietveld quantification and so on. The experimental results show that certain amounts of V2O5 and Fe2O3 are beneficial to the formation of Mg-Al spinel, and the optimum addition of V2O5 and Fe2O3 is respectively 2wt% and 3wt%. V2O5 has few effects on cell parameters of Mg-Al spinel; but Fe2O3 can form solid solution with Mg-Al spinel in which Mg-Fe spinel can also dissolve to form continuous solid solution. Therefore, with the increase of Fe2O3 content, the cell parameters of Mg-Al approximately present linear increase.展开更多
Via the solid phase reaction, Mg-Al spinel has been synthesized by using industrial waste slag from aluminum factory, basic magnesium carbonate and a little amount of clay as the main raw materials. The influences of ...Via the solid phase reaction, Mg-Al spinel has been synthesized by using industrial waste slag from aluminum factory, basic magnesium carbonate and a little amount of clay as the main raw materials. The influences of Cr2O3 mineralizer on crystalline structure, micro-morphology and properties of synthesized Mg-Al spinel are discussed. The synthesized product was characterized by using XRD and SEM, and the relative contents of each crystalline phase are calculated by relevant analytical software such as Philips plus, Rietveld quantification and so on. The experimental results show that a certain amount of Cr2O3 is helpful to the formation of Mg-Al spinel, and when the addition of Cr2O3 is 2.0%, Mg-Al spinel in the system exists in the form of solid solution (Mg0.68A10.32)(A10.84Mg0.16)2O4 whose content is the highest reaching 91%. Then the corresponding indexes of each property are as follows: water absorption 3.0%, apparent porosity 9.8%, bulk density 3.36 g·cm^3, and flexural strength 83.32 MPa. Therefore, we can confirm that the optimum addition of Cr2O3 mineralizer is 2.0%.展开更多
Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure...Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope(OM) and scanning electron microscope(SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength(TRS) of sintered materials decreased with greater Mg content(Al-3Cu-2.5Mg). However, Al-3Cu-0.5Mg alloy exhibited moderate TRS but higher specific strength than Al-3Cu without Mg addition.展开更多
基金Supported by the Development and Reform Commission of Fujian Province and Talent Foundation of Fuzhou University
文摘Mg-Al spinel is synthesized by using industrial waste-residue and basic magnesium carbonate in the aluminum factory as the main raw materials. The influence of sintering temperature on crystalline structure and microstructure of Mg-Al spinel has been mainly discussed. The crystalline structure of sample is characterized by using XRD, SEM and relevant analytical software. The experimental results show that compared to the conventional synthetic method, the application of waste aluminum slag as the raw material can greatly decrease the synthetic tem-perature. The content of Mg-Al spinel first increases and then decreases with the rise of sintering temperature, and its purity can reach as high as 96wt% at 1550 ℃, which is therefore determined to be the optimum synthetic temperature. SEM observations demonstrate that as the rise of sintering temperature, the grain of Mg-Al spinel grows up obviously with typical octahedral characteristic appearance.
基金Supported by the Development and Reform Commission of Fujian Province and Talent Foundation of Fuzhou University
文摘Mg-Al spinel is synthesized by using industrial waste-residue and basic magnesium carbonate in the aluminum factory as the main raw materials. The influence of V2O5 and Fe2O3 mineralizers on the structure, cell parameters and microscopic morphology of synthesized Mg-Al spinel has been discussed. The Mg-Al spinel is characterized by using XRD, SEM and relevant analytical software, such as Philips plus, Rietveld quantification and so on. The experimental results show that certain amounts of V2O5 and Fe2O3 are beneficial to the formation of Mg-Al spinel, and the optimum addition of V2O5 and Fe2O3 is respectively 2wt% and 3wt%. V2O5 has few effects on cell parameters of Mg-Al spinel; but Fe2O3 can form solid solution with Mg-Al spinel in which Mg-Fe spinel can also dissolve to form continuous solid solution. Therefore, with the increase of Fe2O3 content, the cell parameters of Mg-Al approximately present linear increase.
基金Supported by the Natural Science Foundation of Fujian Province (No. T0750005)Science and Technology Developing Foundation of Fuzhou University (No. 2007-XQ-02)
文摘Via the solid phase reaction, Mg-Al spinel has been synthesized by using industrial waste slag from aluminum factory, basic magnesium carbonate and a little amount of clay as the main raw materials. The influences of Cr2O3 mineralizer on crystalline structure, micro-morphology and properties of synthesized Mg-Al spinel are discussed. The synthesized product was characterized by using XRD and SEM, and the relative contents of each crystalline phase are calculated by relevant analytical software such as Philips plus, Rietveld quantification and so on. The experimental results show that a certain amount of Cr2O3 is helpful to the formation of Mg-Al spinel, and when the addition of Cr2O3 is 2.0%, Mg-Al spinel in the system exists in the form of solid solution (Mg0.68A10.32)(A10.84Mg0.16)2O4 whose content is the highest reaching 91%. Then the corresponding indexes of each property are as follows: water absorption 3.0%, apparent porosity 9.8%, bulk density 3.36 g·cm^3, and flexural strength 83.32 MPa. Therefore, we can confirm that the optimum addition of Cr2O3 mineralizer is 2.0%.
基金Project(NRF-2012R1A1A1012983) supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT&Future PlanningProject supported by the New Faculty Research Fund of Ajou University,Korea
文摘Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope(OM) and scanning electron microscope(SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength(TRS) of sintered materials decreased with greater Mg content(Al-3Cu-2.5Mg). However, Al-3Cu-0.5Mg alloy exhibited moderate TRS but higher specific strength than Al-3Cu without Mg addition.