期刊文献+
共找到572篇文章
< 1 2 29 >
每页显示 20 50 100
Superhydrophobic and corrosion-resistant siloxane-modified MgAl-LDHs coatings on magnesium alloy prepared under mild conditions
1
作者 Wenxi Zhang Zhangzelong Zhuo +2 位作者 Dan Xu Liang Wu Zhihui Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期450-463,共14页
We have developed a superhydrophobic and corrosion-resistant LDH-W/PFDTMS composite coating on the surface of Mg alloy.This composite comprised a tungstate-intercalated(LDH-W)underlayer that was grown at low temperatu... We have developed a superhydrophobic and corrosion-resistant LDH-W/PFDTMS composite coating on the surface of Mg alloy.This composite comprised a tungstate-intercalated(LDH-W)underlayer that was grown at low temperature(relative to hydrothermal reaction conditions)under atmospheric pressure and an outer polysiloxane layer created from a solution containing perfluorodecyltrimethoxysilane(PFDTMS)using a simple immersion method.The successful intercalation of tungstate into the LDH phase and the following formation of the polysiloxane layer were confirmed through X-ray diffraction(XRD),Fourier transform infrared(FTIR)spectroscopy,and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the LDH-W film,both before and after the PFDTMS modification,was evaluated using electrochemical impedance spectroscopy(EIS),Tafel curves,and immersion experiments.The results showed that Mg coated with LDH-W/PFDTMS exhibited significantly enhanced corrosion protection compared to the unmodified LDHW film,with no apparent signs of corrosion after exposure to 3.5wt%NaCl solution for 15 d.Furthermore,the LDH-W/PFDTMS coating demonstrated superior superhydrophobicity and self-cleaning properties against water and several common beverages,as confirmed by static contact angle and water-repellency tests.These results offer valuable insights into preparing superhydrophobic and corrosion-resistant LDH-based composite coatings on Mg alloy surfaces under relatively mild reaction conditions. 展开更多
关键词 mg alloy CORROSION coating layered double hydroxide
下载PDF
Effect of pre-twinning and heat treatment on formability of AZX311 Mg alloy 被引量:1
2
作者 Mahesh Panchal Lalit Kaushik +3 位作者 Min-Seong Kim Ravi Kottan Renganayagalu Shi-Hoon Choi Jaiveer Singh 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1154-1169,共16页
In this study,the effects of pre-strain-induced tensile twins(TTWs)and controlled heat treatment on the formability behavior of AZX311 Mg alloy sheets were investigated.A 4%compressive strain was applied to pre-strain... In this study,the effects of pre-strain-induced tensile twins(TTWs)and controlled heat treatment on the formability behavior of AZX311 Mg alloy sheets were investigated.A 4%compressive strain was applied to pre-strain the sheets using the in-plane compression(IPC)technique along the rolling direction(RD)to introduce TTWs.The pre-strained(PS)samples were subsequently heat-treated at 250℃,350℃,and 400℃ independently for 1 hr,and are termed as PSA1,PSA2,and PSA3,respectively.Erichsen cupping tests were conducted to assess the formability of the sheet samples under different initial conditions.The results showed that the PS sample heat-treated at 250℃ for 1hr exhibited a decrease in the Erichsen index(IE)compared to the as-rolled sample,whereas PSA2 and PSA3 samples showed an increase in IE values.Microtexture analysis revealed that most of the TTWs generated through pre-twinning were stable at 250℃;however,the twin volume fraction reduced to 41%at 350℃ compared to the PS samples due to enhanced thermal activity at that temperature.Furthermore,PSA2 samples showed severe grain coarsening in some areas of the sample,and the fraction of such grains increased in the PSA3 samples.The stretch formability(IE value)of PSA2 samples showed a 32.3%increase compared to the as-rolled specimens.Additionally,the analysis of the deformed specimen at failure under the Erichsen test indicated that considerable detwinning occurs in the PS and PSA1 samples,whereas dislocation slip activity dominates in the PSA2 and PSA3 samples during stretch forming.Apart from detwinning and dislocation slip,deformation twins were also observed in all samples after the Erichsen test.Thus,this work highlights the importance of texture control and its underlying mechanisms via pre-twinning followed by heat treatment and their impact on the room temperature(RT)stretch formability of AZX311 Mg alloy sheets. 展开更多
关键词 mg alloys Pre-twinning Texture FORMABILITY EBSD.
下载PDF
Revealing the role of pyramidal slip in the high ductility of Mg-Li alloy 被引量:1
3
作者 Jing Xu Bo Guan +3 位作者 Yunchang Xin Guangjie Huang Peidong Wu Qing Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1021-1025,共5页
The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can... The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can only slightly stimulate the activation of pyramidal<c+a>slip under compression along the normal direction of a hot-rolled Mg-4.5 wt.%Li plate,with a relative activity of approximately 18%.Although the limited activity of pyramidal<c+a>slip alone cannot accommodate a large plastic strain,it effectively reduces the number of{10.11}−{10.12}double twins,which are believed to be favorable sites for crack initiation.The evidently reduced activity of double twins leads to a lower cracking tendency,and therefore improves ductility. 展开更多
关键词 mg alloy Plasticity Plastic deformation SLIP Twinning.
下载PDF
Effect of nano-CaO particle on the microstructure,mechanical properties and corrosion behavior of lean Mg-1Zn alloy 被引量:1
4
作者 Guangxin Shen Shaoyuan Lyu +5 位作者 Leiting Yu Tianlu Li Chen You Xuewei Wang Minfang Chen Bin Jiang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期794-814,共21页
The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the g... The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the grain size and improved mechanical properties of the Mg-1Zn alloy.At the same time,CaO reacted with molten Mg in situ to form nano-MgO,whose corrosion product in SBF solution was the same with the degradation product of Mg matrix,resulting in the enhanced compactness of the Mg(OH)_(2) layer and reduced corrosion rate of matrix.The Mg-1Zn alloy had lower corrosion resistance due to excessively large grain size and shedding of corrosion products.The composite with 0.5 wt.%CaO had the best corrosion resistance with a weight loss of 9.875 mg·y^(-1)·mm^(-2)due to the small number of Ca_(2)Mg_(6)Zn_(3) phase and suitable grain size.While for composites with high content of CaO(0.7 wt.%and 1.0 wt.%),they had lower corrosion resistance due to the coexistence of large number of Ca_(2)Mg_(6)Zn_(3) and Mg_(2)Ca at grain boundaries,especially for 1.0 wt.%CaO composite,resulting from the strong micro-galvanic corrosion. 展开更多
关键词 Lean mg alloy In situ mgO Nanoparticles Grain refinement Corrosion resistance
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
5
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Study on the low mechanical anisotropy of extruded Mg-Zn-Mn-Ce-Ca alloy tube in the compression process 被引量:1
6
作者 Dandan Li Qichi Le +6 位作者 Xiong Zhou Xiaoqiang Li Chenglu Hu Ruizhen Guo Tong Wang Ping Wang Wenxin Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1054-1067,共14页
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani... In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube. 展开更多
关键词 mg alloy tube Low mechanical anisotropy Weak texture Deformation mechanism.
下载PDF
Mechanism of microarc oxidation on AZ91D Mg alloy induced byβ-Mg_(17)Al_(12) phase 被引量:1
7
作者 Dajun Zhai Xiaoping Li Jun Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期712-724,共13页
This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))wer... This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample. 展开更多
关键词 AZ91D mg alloy microarc oxidation friction stir processing ZrO_(2) TiO_(2) β-mg_(17)Al_(12)
下载PDF
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys 被引量:1
8
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 mg–Al alloy EXTRUSION BENDING Precipitation Microstructure
下载PDF
Structural,mechanical and electronic properties of precipitates in Mg−Zn alloys 被引量:1
9
作者 Tian-zhi ZHANG Yang-zhen LIU +3 位作者 Qing-yun FU Bai-song GUO Wei-hong JIN Zhen-tao YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2507-2520,共14页
To accelerate the development and design of magnesium(Mg)alloys,the structural and mechanical properties of important precipitates in Mg−Zn alloys were studied by experiments and density functional theory.The nano-ind... To accelerate the development and design of magnesium(Mg)alloys,the structural and mechanical properties of important precipitates in Mg−Zn alloys were studied by experiments and density functional theory.The nano-indentation tests revealed that the hardness of the precipitates initially increased and then decreased with increasing Zn content,and was significantly higher than that of pure Mg and Zn.The calculation results revealed that the precipitates stability initially increased and then decreased with increasing Zn concentration.The bulk moduli of the precipitates increased,whereas their shear and Young’s moduli initially increased and then decreased with increasing Zn content.The decreasing order of ductility for these compounds is MgZn_(2)>Mg_(21)Zn_(25)>Mg_(2)Zn_(11)>Mg_(4)Zn_(7).The surface profiles of the compounds revealed that they are obvious anisotropy.Both the degree of covalency and bond length of covalent bonds initially increased and then decreased with increasing Zn content. 展开更多
关键词 mg−Zn alloy nano-indentation MODULUS HARDNESS chemical bonding
下载PDF
Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al-Zn-Mg-Cu alloys with coupling distribution of coarse-fine grains 被引量:1
10
作者 Liangliang Yuan Mingxing Guo +2 位作者 Yi Wang Yun Wang Linzhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1392-1405,共14页
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w... This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys. 展开更多
关键词 Al–Zn–mg–Cu alloy iron-rich phase high formability microstructure MECHANISMS
下载PDF
Maximizing the potential applications of plasma electrolytic oxidation coatings produced on Mg-based alloys in anti-corrosion,antibacterial,and photocatalytic targeting through harnessing the LDH/PEO dual structure
11
作者 Elham Nikoomanzari Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2674-2694,共21页
There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corros... There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corrosion resistance and lack of antibacterial properties pose significant challenges in the industrial and biomedical applications,necessitating the implementation of advanced coating engineering techniques.Plasma electrolytic oxidation(PEO)has emerged as a preferred coating technique because of its distinctive properties and successful surface modification results.However,there is a continuous need for further enhancements to optimize the performance and functionalities of protective surface treatments.The integration of layered double hydroxide(LDH)into PEO coatings on Mg alloys presents a promising approach to bolstering protective properties.This thorough review delves into the latest developments in integrating LDH into PEO coatings for corrosion-related purposes.It particularly emphasizes the significant improvements in corrosion resistance,antibacterial effectiveness,and photocatalytic performance resulting from the incorporation of LDH into PEO coatings.The two key mechanisms that enhance the corrosion resistance of PEO coatings containing LDH are the anion exchangeability of the LDH structure and the pore-sealing effect.Moreover,the antibacterial activity of PEO coatings with LDH stemmed from the release of antibacterial agents stored within the LDH structure,alterations in pH levels,and the photothermal conversion property.Furthermore,by incorporating LDH into PEO coatings,new opportunities emerge for tackling environmental issues through boosted photocatalytic properties,especially in the realm of pollutant degradation. 展开更多
关键词 mg alloy PEO LDH Corrosion Antibacterial activity Photocatalytic degradation
下载PDF
Lap-Shear Performance of Weld-Bonded Mg Alloy and Austenitic Stainless Steel in Three-Sheet Stack-Up
12
作者 Sunusi Marwana Manladan Mukhtar Fatihu Hamza +1 位作者 Singh Ramesh Zhen Luo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期342-353,共12页
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ... With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone. 展开更多
关键词 Weld-bonding Resistance spot welding Austenitic stainless steel mg alloy Failure mode
下载PDF
Antibacterial HA-coatings on bioresorbable Mg alloy
13
作者 K.V.Nadaraia D.V.Mashtalyar +13 位作者 M.A.Piatkova A.I.Pleshkova I.M.Imshinetskiy M.S.Gerasimenko E.A.Belov V.V.Kumeiko D.N.Kozyrev K.A.Fomenko V.V.Mostovaya B.R.Torpanov A.R.Biktimirov I.S.Osmushko S.L.Sinebryukhov S.V.Gnedenkov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1965-1985,共21页
In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S... In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S.aureus),was impregnated into the coating.Samples with vancomycin showed high bactericidal activity against S.aureus.The mechanical and electrochemical properties of the formed coatings were studied,as well as in vitro cytotoxicity tests and in vivo tests on mature male rats were performed.According to SEM,EDS,XRD and XPS data,coatings had a developed morphology and contained hydroxyapatite,which indicates high biocompatibility.The analysis of roughness of coatings without and with vancomycin did not reveal any differences,confirming the high roughness of the samples.During electrochemical tests,an increase in corrosion resistance by more than two times after the application of PEO coatings was revealed.According to the results of an in vivo study,after 28 days of the implantation of samples with calcium phosphate PEO coating and vancomycin,no signs of inflammation were observed,while an inflammatory reaction developed in the area of implantation of bare alloy,followed by encapsulation.Antibiotic release tests from the coatings show a sharp decrease in the concentration of the released antibiotic on day 7 and then a gradual decrease until day 28.Throughout the experiment,no significant deviations in the condition and behavior of the animals were observed;clinical tests did not reveal a systemic toxic reaction. 展开更多
关键词 Bioactive coatings BIOCOMPATIBILITY mg alloy Plasma electrolytic oxidation Hydroxyapatite VANCOMYCIN
下载PDF
Microstructural evolution and mechanical properties of AZ31 Mg alloy fabricated by a novel bifurcation-equal channel angular pressing
14
作者 HAN Ting-zhuang ZHANG Hua +6 位作者 YANG Mu-xuan WANG Li-fei LU Li-wei ZHANG De-chuang CAO Xia XU Ji BAI Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2961-2972,共12页
In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were... In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were first compressed into the die cavity,then sequentially flowed downward through a 90°corner and two 120°shear steps.The total strain of B-ECAP process could reach 3.924 in a single pass.The results of microstructure observation showed that DRX occurred at upsetting process in the die cavity and completed at position D.The grains were refined to 6.3μm at being extruded at 300℃ and grew obviously with the extrusion temperature increase.The shear tress induced by 900 corner and two 120°shear steps resulted in the basal poles of most grains tilted to extrusion direction(ED)by±25°.Compared with the original billets,the extruded sheets exhibited higher yield strengths(YS),which was mainly attributed to the grain refinement.The higher Schmid factor caused by ED-tilt texture resulted in a fracture elongation(FE)more than that of the original bar in ED,while was equivalent to that in transverse direction(TD).As the extrusion temperature increased,the variation of UTS and YS in ED and TD decreased gradually without ductility obviously decrease. 展开更多
关键词 AZ31 mg alloy B-ECAP microstructure texture evolution mechanical properties
下载PDF
Two-stage dynamic recrystallization and texture evolution in Al-7Mg alloy during hot torsion
15
作者 Kwang Tae Son Chang Hee Cho +1 位作者 Myoung Gyun Kim Ji Woon Lee 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1900-1911,共12页
Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behavio... Hot torsion tests were performed on the Al-7Mg alloy at the temperature ranging from 300 to 500℃ and strain rates between 0.05 and 5 s^(-1) to explore the progressive dynamic recrystallization(DRX)and texture behaviors.The DRX behavior of the alloy manifested two distinct stages:Stage 1 at strain of≤2 and Stage 2 at strains of≥2.In Stage 1,there was a slight increase in the DRXed grain fraction(X_(DRX))with predominance of discontinuous DRX(DDRX),followed by a modest change in X_(DRX) until the transition to Stage 2.Stage 2 was marked by an accelerated rate of DRX,culminating in a substantial final X_(DRX) of~0.9.Electron backscattered diffraction(EBSD)analysis on a sample in Stage 2 revealed that continuous DRX(CDRX)predominantly occurred within the(121)[001]grains,whereas the(111)[110]grains underwent a geometric DRX(GDRX)evolution without a noticeable sub-grain structure.Furthermore,a modified Avrami’s DRX kinetics model was utilized to predict the microstructural refinement in the Al-7Mg alloy during the DRX evolution.Although this kinetics model did not accurately capture the DDRX behavior in Stage 1,it effectively simulated the DRX rate in Stage 2.The texture index was employed to assess the evolution of the texture isotropy during hot-torsion test,demonstrating significant improvement(>75%)in texture randomness before the commencement of Stage 2.This initial texture evolution is attributed to the rotation of parent grains and the substructure evolution,rather than to an increase in X_(DRX). 展开更多
关键词 Al-7mg alloys hot deformation hot torsion tests dynamic recrystazlliation microstructure texture
下载PDF
Twinning aspects and their efficient roles in wrought Mg alloys:A comprehensive review
16
作者 S.S.A.Shah Manping Liu +5 位作者 Azim Khan Farooq Ahmad M.R.Abdullah Xingquan Zhang Shiwei Xu Zhen Peng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2201-2230,共30页
Twinning is widely recognized as an effective and cost-efficient method for controlling the microstructure and properties of wrought magnesium(Mg)alloys.Specifically,twins play a crucial role in initiating dynamic rec... Twinning is widely recognized as an effective and cost-efficient method for controlling the microstructure and properties of wrought magnesium(Mg)alloys.Specifically,twins play a crucial role in initiating dynamic recrystallization(DRX),while twin regions experience rapid recrystallization during static recrystallization(SRX).The activation of twinning can lead to changes in lattice orientation,significantly impacting the final texture in Mg alloys.The active roles of twinning are influenced by various factors during the activation process,and the mobility of twin boundaries(TB)can be amplified by stress effects,dislocation interactions,and thermal effects.Conversely,annealing treatments that involve proper segregation or precipitation on TBs serve to stabilize them,restraining their motion.Events such as segregation may also alter the twinning propensity in Magnesium-rare earth(Mg-RE)alloys.While{10–11}contraction twins(CT)and{10–11}-{10–12}double twins(DT)can promote dynamic recrystallization(DRX),they also pose a risk as potential sources of voids and cracks.Additionally,understanding the nucleation and growth mechanisms of twinning is crucial,and these aspects are briefly reviewed in this article.Considering the factors mentioned above,this article summarizes the recent research progress in this field,shedding light on advancements in recent eras. 展开更多
关键词 mg alloys TWINNING RECRYSTALLIZATION TEXTURE Mechanical properties
下载PDF
Preparation,microstructure and degradation behavior of Mg−2Zn−0.4Sc−0.2Zr alloy wire
17
作者 Yu-qing HE Ri-chu WANG +3 位作者 Xiao-hui DUAN Xiang PENG Yu-si CHEN Yan FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3585-3598,共14页
A biodegradable Mg−2Zn−0.4Sc−0.2Zr(ZK20−0.4Sc)alloy wire with a diameter of 0.5 mm was prepared by a combination of hot extrusion and cold-drawing.The average grain size of ZK20−0.4Sc alloy wire on the longitudinal se... A biodegradable Mg−2Zn−0.4Sc−0.2Zr(ZK20−0.4Sc)alloy wire with a diameter of 0.5 mm was prepared by a combination of hot extrusion and cold-drawing.The average grain size of ZK20−0.4Sc alloy wire on the longitudinal section along the drawing direction is approximately 7.3μm.The texture results show relatively strong<1020>and weak<1010>fiber texture components parallel to the drawing direction.The ZK20−0.4Sc alloy wire exhibits better mechanical properties with the tensile strength,yield strength and elongate of(329±2)MPa,(287±2)MPa and(14.2±0.5)%,respectively.The better mechanical properties are mainly attributed to the grain refinement strengthening,dislocation strengthening and precipitation strengthening.With the immersion time increasing to 14 d,the corrosion type transfers from filament corrosion and pitting corrosion to severe localized corrosion. 展开更多
关键词 mg alloy wire cold drawing MICROSTRUCTURE mechanical properties degradation behavior
下载PDF
Enhancing constitutive description and workability characterization of Mg alloy during hot deformation using machine learning-based Arrhenius-type model
18
作者 Jinchuan Long Lei Deng +6 位作者 Junsong Jin Mao Zhang Xuefeng Tang Pan Gong Xinyun Wang Gangfeng Xiao Qinxiang Xia 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期3003-3023,共21页
Hot deformation is a commonly employed processing technique to enhance the ductility and workability of Mg alloy.However,the hot deformation of Mg alloy is highly sensitive to factors such as temperature,strain rate,a... Hot deformation is a commonly employed processing technique to enhance the ductility and workability of Mg alloy.However,the hot deformation of Mg alloy is highly sensitive to factors such as temperature,strain rate,and strain,leading to complex flow behavior and an exceptionally narrow processing window for Mg alloy.To overcome the shortcomings of the conventional Arrhenius-type(AT)model,this study developed machine learning-based Arrhenius-type(ML-AT)models by combining the genetic algorithm(GA),particle swarm optimization(PSO),and artificial neural network(ANN).Results indicated that when describing the flow behavior of the AQ80 alloy,the PSO-ANN-AT model demonstrates the most prominent prediction accuracy and generalization ability among all ML-AT and AT models.Moreover,an activation energy-processing(AEP)map was established using the reconstructed flow stress and activation energy fields based on the PSO-ANN-AT model.Experimental validations revealed that this AEP map exhibits superior predictive capability for microstructure evolution compared to the one established by the traditional interpolation methods,ultimately contributing to the precise determination of the optimum processing window.These findings provide fresh insights into the accurate constitutive description and workability characterization of Mg alloy during hot deformation. 展开更多
关键词 Constitutive description Workability characterization Machine learning mg alloy Hot deformation
下载PDF
In situ TEM investigation of electron irradiation and aging-induced high-density nanoprecipitates in an Mg-10Gd-3Y-1Zn-0.5Zr alloy
19
作者 M.Lv H.L.Ge +4 位作者 Q.Q.Jin X.H.Shao Y.T.Zhou B.Zhang X.L.Ma 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1841-1853,共13页
In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after... In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging. 展开更多
关键词 mg alloy Electron beam irradiation HARDENING PRECIPITATES In-situ TEM
下载PDF
Development of anti-corrosive coating on AZ31 Mg alloy modified by MOF/LDH/PEO hybrids
20
作者 Muhammad Ali Khan Ananda Repycha Safira +1 位作者 Mohammad Aadil Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期586-607,共22页
The self-assembly of hybrid inorganic-organic materials on stationary platforms plays a critical role in improving their structural stability and wide usability.In this work,a novel two-step hydrothermal approach is p... The self-assembly of hybrid inorganic-organic materials on stationary platforms plays a critical role in improving their structural stability and wide usability.In this work,a novel two-step hydrothermal approach is proposed for synthesizing stable and advanced hybrid coatings on metal-oxide platforms through the surface modification of layered double hydroxide(LDH)films using novel metal-organic frameworks(MOFs).Initially,Mg-Al LDH nanocontainers,grown on a magnesium oxide layer produced through plasma electrolytic oxidation(PEO)of AZ31 Mg alloy substrate,were intercalated with cobalt via an oxidation route,providing the metallic coordination center for the MOF formation.In the subsequent step,a pioneering technique is introduced,utilizing tryptophan as the organic linker for the first time at a pH of 10.The self-assembly of cobalt-tryptophan complex,driven by the strong bonding between electrophilic sites of monomers and nucleophilic sites,facilitated the formation of a MOF network having a cloud-like structure on the surface of MgAl LDH's film.The resulting MOF-LDH encapsulation containers demonstrate exceptional electrochemical stability when exposed to a 3.5 wt.%NaCl solution,surpassing the performance of PEO and pure LDH coatings.This enhanced stability is attributed to the development of a dense top layer and a stable composition within the self-assembled MOF,effectively sealing flaws and preventing the infiltration of corrosive ions into the underlying metallic substrate.The formation mechanism of MOFs on LDH galleries is investigated using density functional theory calculations. 展开更多
关键词 mg alloy Layered double hydroxide Metal-organic frameworks Corrosion DFT
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部