Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed an...Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed and the effects of the used process factors on these characteristics were analyzed. The results of observations shows that, in thickness, the components possess microstructures accumulating lots of Mg2Si particles and a portion of primary silicon particles in the inner layer, a little MgzSi and primary silicon particles in the outer layer, and without any Mg2Si and primary silicon particle in the middle layer. The results of the analysis indicate that the rotation rate of centrifugal casting, mould temperature, and melt pouring temperature have evidently affected the accumulation of the second phase particles. Also, the higher the centrifugal rotation rate, mould temperature, and melt pouring temperature are, the more evident in the inner layer the degree of accumulation of Mg2Si and primary silicon particles is.展开更多
In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automo...In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.展开更多
The microstructures and corrosion behaviors of the Al−6.5Si−0.45Mg casting alloys with the addition of Sc were investigated by using scanning electron microscopy,X-ray diffraction,electrochemical measurement technique...The microstructures and corrosion behaviors of the Al−6.5Si−0.45Mg casting alloys with the addition of Sc were investigated by using scanning electron microscopy,X-ray diffraction,electrochemical measurement techniques and immersion corrosion tests and compared with those of Sr-modified alloy.The results show that Sc has evident refining and modifying effects on the primaryα(Al)and the eutectic Si phase of the alloy,and the effects can be enhanced with the increase of Sc content.When the Sc content is increased to 0.58 wt.%,its modifying effect on the eutectic Si is almost same as that of Sr.Sc can improve the corrosion resistance of the test alloy in NaCl solution when compared with Sr,but the excessively high Sc content cannot further increase the corrosion resistance of the alloy.The corrosion of the alloys mainly occurs in the eutectic region of the alloy,and mostly the eutecticα(Al)is dissolved.This confirms that Si phase is more noble thanα(Al)phase,and the galvanic couplings can be formed between the eutectic Si andα(Al)phases.展开更多
A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casti...A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casting AZ91 alloy with combined addition of Y and Ca were investigated by optical microscopy, scanning electronic microscopy, X-ray diffractometry and mechanical property test. The results show that the combined addition of Y and Ca can refine the as-die-cast microstructure, result in the formation of Al2Ca phase and Al2Y phase, and inhibit the precipitation of Mg17Al12 phase. The combined addition of Y and small amount of Ca has little influence on the ambient temperature tensile properties, but increasing the content of Ca can improve significantly the tensile strength at both ambient and elevated temperatures. It is found that for AZ91-1Y-xCa alloy, the hardness and the elevated temperature tensile strength increase, while the elongation decreases with increasing the addition of Ca. The mechanism of mechanical properties improvement caused by the combined addition of Y and Ca was also discussed.展开更多
The effects of Mg content and cooling rate on the solidification behaviour of Al-7%Si-Mg(mass fraction) casting alloys have been investigated using differential scanning calorimetry, differential thermal analysis an...The effects of Mg content and cooling rate on the solidification behaviour of Al-7%Si-Mg(mass fraction) casting alloys have been investigated using differential scanning calorimetry, differential thermal analysis and microscopy. The Mg contents were selected as respectively 0.00%, 0.35% and 0.70%(mass fraction). DTA curves of Al-7%Si-0.55%Mg(mass fraction) alloy at various cooling rates were accomplished and the alloy melt was cast in different cooling rates. The results indicate that increasing Mg content can lower the liquidus and binary Al-Si eutectic transformation temperatures. Large Fe-rich π-phases (Al8FeMg3Si6) are found in the 0.70% Mg alloys together with some small β-phases (Al5FeSi); in contrast, only β-phases are observed in the 0.35% Mg alloys. The test results of the Al-7%Si-0.55%Mg alloys identify that the liquidus and binary Al-Si eutectic transformation temperatures decrease, and the quantity of ternary Al-Si-Mg2Si eutectic phase decreases as the cooling rate increases.展开更多
The effect of the Mg/Si ratio of Al-2.5Li-1Cu-0.8Mg-0.8Si,Al-2.5Li-1Cu-1.6Mg-0.8Si,and Al-2.5Li-1Cu-2.4Mg-0.8Si alloys on the microstructure evolution and mechanical properties was investigated.The results show that t...The effect of the Mg/Si ratio of Al-2.5Li-1Cu-0.8Mg-0.8Si,Al-2.5Li-1Cu-1.6Mg-0.8Si,and Al-2.5Li-1Cu-2.4Mg-0.8Si alloys on the microstructure evolution and mechanical properties was investigated.The results show that the primary phases and their morphologies in the as-cast alloys are found to vary with the Mg/Si ratio.The improvement of Mg/Si ratio of as-cast alloys promotes the formation of Mg_(2)Si primary phase at the expense of the AlLiSi primary phase.Moreover,a tiny amount of T_(B)-Al_(7.5)Cu_(4)Li phase transforms into S-Al_(2)CuMg phase with the increase of Mg content.In addition,the increase of Mg/Si ratio also causes the Cu-rich intergranular phase distributed along crystal boundary to Si-rich intergranular phase.After ageing treatment,the precipitation sequence as a function of Mg/Si ratio is as follows:δ/δ'+AlLiSi(Mg/Si is~1)→δ/δ'+β'-Mg_(2)Si+AlLiSi(Mg/Si is~2)→δ/δ'+β'-Mg_(2)Si(Mg/Si is~3).A good combination of strength and ductility can be obtained in Al-2.5Li-1Cu-2.4Mg-0.8Si alloy after solution and ageing.The rod-likeβ'-Mg_(2)Si precipitate has a positive influence on the comprehensive mechanical properties of the alloy.展开更多
The improvements of microstructures and properties of a high strength aluminum cast alloy were studied. The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast all...The improvements of microstructures and properties of a high strength aluminum cast alloy were studied. The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast alloy Al-Cu-Mg-Si were investigated. The result shows that the addition of rare earth elements can change the microstructures in refining the grain size of the alloy and making the needle-like and laminar eutectic Si to a granular Si. With the increase of the rare earth, the tensile strength and elongation of the alloy increase first and then fall down. The mechanical properties of the alloy will reach the highest value when the content of rare earth elements is about 0.7%.展开更多
The present work has investigated the effect of trace elements Cd and Sn on the microstructure and mechanical properties of Al-Si-Cu-Mg cast alloy. With the increase of Cd addition the strength of alloy rises at first...The present work has investigated the effect of trace elements Cd and Sn on the microstructure and mechanical properties of Al-Si-Cu-Mg cast alloy. With the increase of Cd addition the strength of alloy rises at first and then drops. The optimal amount of Cd and Sn addition for Al-Si-Cu-Mg alloy is about 0.27% and 0.1% respectively. Due to the formation of some coarse Cd-rich phases and pure Cd particles the mechanical properties of alloy decrease when Cd amount exceeds 0.27%. When more than 0.1% Sn added, some Sn atoms form low-melting eutectic compound at grain boundary, and then cause over-burning in alloy when solution treated, which may deteriorate properties of alloy, especially ductility of alloy. On the other hand, the addition of Cd and Sn remarkably increases the peak hardness and reduces the time to reach aging peak in Al-Si-Cu-Mg alloy. The action of Cd /Sn in quaternary Al-Si-Cu-Mg alloy is effectively the same as that occur in binary Al-Cu alloy that the enhanced hardening associated with Cd / Sn addition is due to the promotion of the 6’ phase.展开更多
The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried ...The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried out at 350-500°C and 0.001-5s-1.The results show that microstructures of Al-17.5Si-4Cu-0.5Mg alloys were obviously improved by squeeze casting.Due to the decrease of coarse primary Si particles,softα-Al dendrite as well as the fine microstructures appeared,and the mechanical properties of squeeze casting alloys were improved.However,when the strain rate rises or the deformation temperature decreases,the flow stress increases and it was proved that the alloy is a positive strain rate sensitive material.It was deduced that compared with the gravity casting alloy,squeeze casting alloy(solidified at 632 MPa)is more difficult to deform since the flow stress of squeeze casting alloy is higher than that of gravity casting alloy when the deformation temperature exceeds 400°C.Flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy can be described by a hyperbolic sine form with Zener-Hollomon parameter,and the average hot deformation activation energy Q of gravity casting alloy and squeeze casting alloy is 278.97 and 308.77kJ/mol,respectively.展开更多
文摘Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed and the effects of the used process factors on these characteristics were analyzed. The results of observations shows that, in thickness, the components possess microstructures accumulating lots of Mg2Si particles and a portion of primary silicon particles in the inner layer, a little MgzSi and primary silicon particles in the outer layer, and without any Mg2Si and primary silicon particle in the middle layer. The results of the analysis indicate that the rotation rate of centrifugal casting, mould temperature, and melt pouring temperature have evidently affected the accumulation of the second phase particles. Also, the higher the centrifugal rotation rate, mould temperature, and melt pouring temperature are, the more evident in the inner layer the degree of accumulation of Mg2Si and primary silicon particles is.
基金supported by the foundation of“Cold area new energy service engineering laboratory battery pack comprehensive test system”from Jilin Provincial Development and Reform Commission(2020C021-6)the National Natural Science Foundation of China(NNSFC,No.52371109).
文摘In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.
文摘The microstructures and corrosion behaviors of the Al−6.5Si−0.45Mg casting alloys with the addition of Sc were investigated by using scanning electron microscopy,X-ray diffraction,electrochemical measurement techniques and immersion corrosion tests and compared with those of Sr-modified alloy.The results show that Sc has evident refining and modifying effects on the primaryα(Al)and the eutectic Si phase of the alloy,and the effects can be enhanced with the increase of Sc content.When the Sc content is increased to 0.58 wt.%,its modifying effect on the eutectic Si is almost same as that of Sr.Sc can improve the corrosion resistance of the test alloy in NaCl solution when compared with Sr,but the excessively high Sc content cannot further increase the corrosion resistance of the alloy.The corrosion of the alloys mainly occurs in the eutectic region of the alloy,and mostly the eutecticα(Al)is dissolved.This confirms that Si phase is more noble thanα(Al)phase,and the galvanic couplings can be formed between the eutectic Si andα(Al)phases.
基金Project(2008T142) supported by the Innovation Team Program of Liaoning Provincial Department of Education of China
文摘A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casting AZ91 alloy with combined addition of Y and Ca were investigated by optical microscopy, scanning electronic microscopy, X-ray diffractometry and mechanical property test. The results show that the combined addition of Y and Ca can refine the as-die-cast microstructure, result in the formation of Al2Ca phase and Al2Y phase, and inhibit the precipitation of Mg17Al12 phase. The combined addition of Y and small amount of Ca has little influence on the ambient temperature tensile properties, but increasing the content of Ca can improve significantly the tensile strength at both ambient and elevated temperatures. It is found that for AZ91-1Y-xCa alloy, the hardness and the elevated temperature tensile strength increase, while the elongation decreases with increasing the addition of Ca. The mechanism of mechanical properties improvement caused by the combined addition of Y and Ca was also discussed.
基金financially supported by the Fundamental Research Funds for the Central Universities,China(No.2020CDJDPT001)the Chongqing Natural Science Foundation,China(No.cstc2021jcyj-msxm X0699)。
基金Project (G2000067202) supported by the National Major Basic Research Program of China
文摘The effects of Mg content and cooling rate on the solidification behaviour of Al-7%Si-Mg(mass fraction) casting alloys have been investigated using differential scanning calorimetry, differential thermal analysis and microscopy. The Mg contents were selected as respectively 0.00%, 0.35% and 0.70%(mass fraction). DTA curves of Al-7%Si-0.55%Mg(mass fraction) alloy at various cooling rates were accomplished and the alloy melt was cast in different cooling rates. The results indicate that increasing Mg content can lower the liquidus and binary Al-Si eutectic transformation temperatures. Large Fe-rich π-phases (Al8FeMg3Si6) are found in the 0.70% Mg alloys together with some small β-phases (Al5FeSi); in contrast, only β-phases are observed in the 0.35% Mg alloys. The test results of the Al-7%Si-0.55%Mg alloys identify that the liquidus and binary Al-Si eutectic transformation temperatures decrease, and the quantity of ternary Al-Si-Mg2Si eutectic phase decreases as the cooling rate increases.
基金financially supported by the National Natural Science Foundation of China(51774105)Touyan Innovation Team Program(XNAUEA5640208420)。
文摘The effect of the Mg/Si ratio of Al-2.5Li-1Cu-0.8Mg-0.8Si,Al-2.5Li-1Cu-1.6Mg-0.8Si,and Al-2.5Li-1Cu-2.4Mg-0.8Si alloys on the microstructure evolution and mechanical properties was investigated.The results show that the primary phases and their morphologies in the as-cast alloys are found to vary with the Mg/Si ratio.The improvement of Mg/Si ratio of as-cast alloys promotes the formation of Mg_(2)Si primary phase at the expense of the AlLiSi primary phase.Moreover,a tiny amount of T_(B)-Al_(7.5)Cu_(4)Li phase transforms into S-Al_(2)CuMg phase with the increase of Mg content.In addition,the increase of Mg/Si ratio also causes the Cu-rich intergranular phase distributed along crystal boundary to Si-rich intergranular phase.After ageing treatment,the precipitation sequence as a function of Mg/Si ratio is as follows:δ/δ'+AlLiSi(Mg/Si is~1)→δ/δ'+β'-Mg_(2)Si+AlLiSi(Mg/Si is~2)→δ/δ'+β'-Mg_(2)Si(Mg/Si is~3).A good combination of strength and ductility can be obtained in Al-2.5Li-1Cu-2.4Mg-0.8Si alloy after solution and ageing.The rod-likeβ'-Mg_(2)Si precipitate has a positive influence on the comprehensive mechanical properties of the alloy.
基金This work was financially supported by the Fund of BeijingJiaotong University(No.2004SZ006).
文摘The improvements of microstructures and properties of a high strength aluminum cast alloy were studied. The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast alloy Al-Cu-Mg-Si were investigated. The result shows that the addition of rare earth elements can change the microstructures in refining the grain size of the alloy and making the needle-like and laminar eutectic Si to a granular Si. With the increase of the rare earth, the tensile strength and elongation of the alloy increase first and then fall down. The mechanical properties of the alloy will reach the highest value when the content of rare earth elements is about 0.7%.
基金This project is supported by the National Natural Science Foundation of China.(No.50275098)
文摘The present work has investigated the effect of trace elements Cd and Sn on the microstructure and mechanical properties of Al-Si-Cu-Mg cast alloy. With the increase of Cd addition the strength of alloy rises at first and then drops. The optimal amount of Cd and Sn addition for Al-Si-Cu-Mg alloy is about 0.27% and 0.1% respectively. Due to the formation of some coarse Cd-rich phases and pure Cd particles the mechanical properties of alloy decrease when Cd amount exceeds 0.27%. When more than 0.1% Sn added, some Sn atoms form low-melting eutectic compound at grain boundary, and then cause over-burning in alloy when solution treated, which may deteriorate properties of alloy, especially ductility of alloy. On the other hand, the addition of Cd and Sn remarkably increases the peak hardness and reduces the time to reach aging peak in Al-Si-Cu-Mg alloy. The action of Cd /Sn in quaternary Al-Si-Cu-Mg alloy is effectively the same as that occur in binary Al-Cu alloy that the enhanced hardening associated with Cd / Sn addition is due to the promotion of the 6’ phase.
基金financially supported by the National Key Research and Development Program of China (No. 2020YFA0405903)the National Natural Science Foundation of China (Nos. 52001159, 52101141)+1 种基金the Natural Science Foundation of Jiangsu ProvinceChina (No. BK20202010)。
基金supported by National Natural Science Foundation of China(51674168)Shenyang City Application Basic Research Foundation(F14-231-1-23)
文摘The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried out at 350-500°C and 0.001-5s-1.The results show that microstructures of Al-17.5Si-4Cu-0.5Mg alloys were obviously improved by squeeze casting.Due to the decrease of coarse primary Si particles,softα-Al dendrite as well as the fine microstructures appeared,and the mechanical properties of squeeze casting alloys were improved.However,when the strain rate rises or the deformation temperature decreases,the flow stress increases and it was proved that the alloy is a positive strain rate sensitive material.It was deduced that compared with the gravity casting alloy,squeeze casting alloy(solidified at 632 MPa)is more difficult to deform since the flow stress of squeeze casting alloy is higher than that of gravity casting alloy when the deformation temperature exceeds 400°C.Flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy can be described by a hyperbolic sine form with Zener-Hollomon parameter,and the average hot deformation activation energy Q of gravity casting alloy and squeeze casting alloy is 278.97 and 308.77kJ/mol,respectively.