In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding(ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure invest...In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding(ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.展开更多
Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are ex...Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are expected to combine the advantages of both Mg and Al alloys to broaden their application prospects. Roll-bonding is the most popular process for the fabrication of Mg/Al LMCs due to high production efficiency and good product quality stability. The roll-bonding process involves the deformation of the substrates and the formation of the interfacial diffusion layer. The latter will directly determine the interface bonding strength of Mg/Al LMCs. Bonding strength is very sensitive to the thickness of the reaction layer in the diffusion layer. When the thickness of the reaction layer exceeds 5 μm, the bonding strength decreases sharply. Therefore, controlling the thickness of the reaction layer is very important for the design of rolling parameters.The latest research also showed that the addition of intermediate layer metal and the construction of three-dimensional interfaces can further improve the interface bonding strength. How to apply these methods to roll-bonding is the focus of future research. Recently, a new rolling technique, corrugated roll/plat roll rolling+flat roll/flat roll rolling has been developed to fabricate Mg/Al LMCs. It can effectively promote the deformation of the hard layer and generate a wavy interface, resulting in the enhancement of the bonding quality and rolling quality.In the current review, the effects of rolling parameters and subsequent annealing on the interface structure of Mg/Al LMCs were elaborated in detail. The application of some special rolling techniques in the preparation of Mg/Al LMCs was also summarized. The latest research results on the relationship between interface structure and mechanical properties of Mg/Al LMCs were reviewed. Finally, further research directions in this field were proposed.展开更多
In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically...In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.展开更多
The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted...The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.展开更多
In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HE...In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa.展开更多
Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al inte...Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.展开更多
The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, bo...The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt% Mg2Si composite are well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape, and its average particle size is signifi- cantly decreased. Moreover, the morphology of the eutectic MgzSi phase is altered from flake-like to very short fibrous or dot-like. The wear rates and friction coefficient of the composites with Nd are lower than those without Nd. Furthermore, the addition of 0.5 wt% Nd changes the wear mechanism of the composite from the combination of abrasive, adhesive, and delamination wear without Nd into a single mild abrasion wear with 0.5 wt% Nd.展开更多
In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex sit...In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.展开更多
A novel method of screw extrusion was used for producing a bimetal composite Al/Mg from granules containing aluminium alloy 6063 (AA6063) and commercial pure magnesium. Up to 12.5%(mass fraction) pure magnesium wa...A novel method of screw extrusion was used for producing a bimetal composite Al/Mg from granules containing aluminium alloy 6063 (AA6063) and commercial pure magnesium. Up to 12.5%(mass fraction) pure magnesium was added to the aluminium alloy. In general, the material consisted of a fine grained microstructure. In addition to the phases originating from the input materials, intermetallic phases were observed as islands consisting of the Al2Mg3 phase surrounded byγ-Mg17Al12, throughout the microstructure. The mechanical properties of the extruded material showed a gradual increase in strength with increasing the addition of Mg. The highest registered UTS, well above 350 MPa, was observed for the material containing 10%Mg. Examinations of the fracture surfaces indicated that increasing the magnesium content led to a higher degree of brittle fracture and a gradual change of the fracture micro-mechanisms. The optimization of the post-extrusion processing conditions is still ongoing.展开更多
Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed an...Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed and the effects of the used process factors on these characteristics were analyzed. The results of observations shows that, in thickness, the components possess microstructures accumulating lots of Mg2Si particles and a portion of primary silicon particles in the inner layer, a little MgzSi and primary silicon particles in the outer layer, and without any Mg2Si and primary silicon particle in the middle layer. The results of the analysis indicate that the rotation rate of centrifugal casting, mould temperature, and melt pouring temperature have evidently affected the accumulation of the second phase particles. Also, the higher the centrifugal rotation rate, mould temperature, and melt pouring temperature are, the more evident in the inner layer the degree of accumulation of Mg2Si and primary silicon particles is.展开更多
The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si com...The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.展开更多
A mesoporous Al-Mg composite oxide with a hexagonal structure was synthesized with aluminium nitrate and magnesium nitrate as the reagents and sodium dodecyl sulfate(SDS) as the template in the presence of ethylened...A mesoporous Al-Mg composite oxide with a hexagonal structure was synthesized with aluminium nitrate and magnesium nitrate as the reagents and sodium dodecyl sulfate(SDS) as the template in the presence of ethylenediamine. The XRD, nitrogen adsorption-desorption and TEM studies indicate that the composite has a hexagonal framework structure and an average pore diameter of 2. 6 nm. The TG/DTA spectra indicate that the decomposition and the removal of the occluded surfactant of the sample take place in a range of 230-550 ℃. The mesoporous Al-Mg composite oxide exhibites a highly catalytic activity for the oxyethylation of fatty alcohols. Narrow-range distributed ethoxylates are formed in the presence of the mesoporous Al-Mg composite oxide catalyst. The distribution selectivity coefficient(Cx) is 24 when the mesoporous Al-Mg composite oxide was used as a catalyst for the oxyethylation of octanol and the average adduct degree of ethoxylates is 6. 4.展开更多
文摘In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding(ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.
基金supported by Guangdong Major Project of Basic and Applied Basic Research,No. 2020B0301030006。
文摘Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are expected to combine the advantages of both Mg and Al alloys to broaden their application prospects. Roll-bonding is the most popular process for the fabrication of Mg/Al LMCs due to high production efficiency and good product quality stability. The roll-bonding process involves the deformation of the substrates and the formation of the interfacial diffusion layer. The latter will directly determine the interface bonding strength of Mg/Al LMCs. Bonding strength is very sensitive to the thickness of the reaction layer in the diffusion layer. When the thickness of the reaction layer exceeds 5 μm, the bonding strength decreases sharply. Therefore, controlling the thickness of the reaction layer is very important for the design of rolling parameters.The latest research also showed that the addition of intermediate layer metal and the construction of three-dimensional interfaces can further improve the interface bonding strength. How to apply these methods to roll-bonding is the focus of future research. Recently, a new rolling technique, corrugated roll/plat roll rolling+flat roll/flat roll rolling has been developed to fabricate Mg/Al LMCs. It can effectively promote the deformation of the hard layer and generate a wavy interface, resulting in the enhancement of the bonding quality and rolling quality.In the current review, the effects of rolling parameters and subsequent annealing on the interface structure of Mg/Al LMCs were elaborated in detail. The application of some special rolling techniques in the preparation of Mg/Al LMCs was also summarized. The latest research results on the relationship between interface structure and mechanical properties of Mg/Al LMCs were reviewed. Finally, further research directions in this field were proposed.
基金the supports provided by the National Natural Science Foundation of China(Nos.52075198 and 52271102)the China Postdoctoral Science Foundation(No.2021M691112)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.
基金Projects(50971038,51174058)supported by the National Natural Science Foundation of China
文摘The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.
基金financial supports from the National Natural Science Foundation of China (No. 51875062)China Postdoctoral Science Foundation (No. 2021M700567)。
文摘In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa.
基金the financial supports from the S&T Program of Hebei Province,China(No.20373901D)the National Natural Science Foundation of China(Nos.51807047,51804095)+2 种基金the National Science Foundation of Hebei Province,China(No.E2019402433)the Youth Top Talents Science and Technology Research Project of Hebei Province University,China(No.BJ2019003)the Research and Development Project of Science and Technology of Handan City,China(No.19422111008-19).
文摘Cold-rolled Ti/Al laminated composites were annealed at 525−625℃for 0−128 h,and the interfacial microstructure evolution was investigated.The results indicate that only the TiAl_(3) phase was formed at the Ti/Al interface;most of TiAl_(3) grains were fine equiaxed with average sizes ranging from hundreds of nanometers to several microns and the TiAl_(3) grain size increased with increasing annealing time and/or temperature,but the effect of annealing temperature on the TiAl_(3) grain size was far greater than that of annealing time.The growth of the TiAl_(3) phase consisted of two stages.The initial stage was governed by chemical reaction with a reaction activation energy of 195.75 kJ/mol,and the reaction rate constant of the TiAl_(3) phase was larger as the Ti/Al interface was bonded with fresh surfaces.At the second stage,the growth was governed by diffusion,the diffusion activation energy was 33.69 kJ/mol,and the diffusion growth rate constant of the TiAl_(3) phase was mainly determined by the grain boundary diffusion owing to the smaller TiAl_(3) grain size.
基金financially supported by the National Natural Youth Science Foundation of China (No. 50901038)the Key Laboratory Foundation of Liaoning Provincial Committee of Education (Nos. 20060394 and 2009S053)
文摘The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt% Mg2Si composite are well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape, and its average particle size is signifi- cantly decreased. Moreover, the morphology of the eutectic MgzSi phase is altered from flake-like to very short fibrous or dot-like. The wear rates and friction coefficient of the composites with Nd are lower than those without Nd. Furthermore, the addition of 0.5 wt% Nd changes the wear mechanism of the composite from the combination of abrasive, adhesive, and delamination wear without Nd into a single mild abrasion wear with 0.5 wt% Nd.
基金supported by the National Natural Science Foundation of China(No.50671044)the Sci-tech Development Project of Jilin Province of China(No.20070506)
文摘In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.
文摘A novel method of screw extrusion was used for producing a bimetal composite Al/Mg from granules containing aluminium alloy 6063 (AA6063) and commercial pure magnesium. Up to 12.5%(mass fraction) pure magnesium was added to the aluminium alloy. In general, the material consisted of a fine grained microstructure. In addition to the phases originating from the input materials, intermetallic phases were observed as islands consisting of the Al2Mg3 phase surrounded byγ-Mg17Al12, throughout the microstructure. The mechanical properties of the extruded material showed a gradual increase in strength with increasing the addition of Mg. The highest registered UTS, well above 350 MPa, was observed for the material containing 10%Mg. Examinations of the fracture surfaces indicated that increasing the magnesium content led to a higher degree of brittle fracture and a gradual change of the fracture micro-mechanisms. The optimization of the post-extrusion processing conditions is still ongoing.
文摘Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed and the effects of the used process factors on these characteristics were analyzed. The results of observations shows that, in thickness, the components possess microstructures accumulating lots of Mg2Si particles and a portion of primary silicon particles in the inner layer, a little MgzSi and primary silicon particles in the outer layer, and without any Mg2Si and primary silicon particle in the middle layer. The results of the analysis indicate that the rotation rate of centrifugal casting, mould temperature, and melt pouring temperature have evidently affected the accumulation of the second phase particles. Also, the higher the centrifugal rotation rate, mould temperature, and melt pouring temperature are, the more evident in the inner layer the degree of accumulation of Mg2Si and primary silicon particles is.
基金financially supported by the Science and Technology Program of Guangzhou,China(No.2015B090926013)Postdoctoral Science Foundation of China(No.2015M581348)+1 种基金Postdoctoral Science Foundation of Northeastern University(No.20150302)the Doctoral Foundation of Chinese Ministry of Education(No.20130042130001)
文摘The effect of high-speed direct-chill(DC) casting on the microstructure and mechanical properties of Al–Mg_2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al–Mg_2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg_2Si particles(from 28 to 12 μm), the spacing of eutectic Mg_2Si(from 3 to 0.5 μm), and the grains of AA6061 alloy(from 102 to 22 μm). The morphology of the eutectic Mg_2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg_2Si phase and the grains in the Al–Mg_2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al–Mg_2Si composites and AA6061 alloy billets.
基金Supported by the Natural Science Foundation of Heilongjiang Province(No.9810B).
文摘A mesoporous Al-Mg composite oxide with a hexagonal structure was synthesized with aluminium nitrate and magnesium nitrate as the reagents and sodium dodecyl sulfate(SDS) as the template in the presence of ethylenediamine. The XRD, nitrogen adsorption-desorption and TEM studies indicate that the composite has a hexagonal framework structure and an average pore diameter of 2. 6 nm. The TG/DTA spectra indicate that the decomposition and the removal of the occluded surfactant of the sample take place in a range of 230-550 ℃. The mesoporous Al-Mg composite oxide exhibites a highly catalytic activity for the oxyethylation of fatty alcohols. Narrow-range distributed ethoxylates are formed in the presence of the mesoporous Al-Mg composite oxide catalyst. The distribution selectivity coefficient(Cx) is 24 when the mesoporous Al-Mg composite oxide was used as a catalyst for the oxyethylation of octanol and the average adduct degree of ethoxylates is 6. 4.