The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kineti...The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kinetics,and dynamic separation of Ca2+and Mg2+ions by strong acid cation resin,and the effects of phosphoric acid and nitric acid on the adsorption process were investigated.The results reveal that the adsorption process of Ca2+and Mg2+ions in pure water on resin is in good agreement with the Langmuir isotherm model and their maximal adsorption capacities are 1.86 mmol·g-1 and 1.83 mmol·g-1,respectively.The adsorption kinetics of Ca2+and Mg2+ions on resin fits better with the pseudo-first-order model,and the adsorption equilibrium in pure water is reached within 10 min contact time,while at the present of phosphoric acid,the adsorption rate of Ca2+and Mg2+ions on resin will go down.The dynamic separation experiments demonstrate that the designed column adsorption is able to undertake the separation of metal ions from the mix acids aqueous solution,but the dynamic operation should control the flow rate of mix acid solution.Besides nitric acid solution was proved to be effective to completely regenerate the spent resin and achieve the recyclable operation of separation process.展开更多
Dendrite growth and thermal runaway induce serious safety hazards,impeding the practical applications of lithium metal batteries(LMBs).Although extensive advances have been attained in terms of LMB safety,most work on...Dendrite growth and thermal runaway induce serious safety hazards,impeding the practical applications of lithium metal batteries(LMBs).Although extensive advances have been attained in terms of LMB safety,most work only focus on a single aspect at a time.This paper reports a multifunctional separator coated by Mg(OH)2 nanoflakes with various excellent properties including electrolyte wettability,ionic conductivity,Li+ transference number,puncture strength,thermal stability and flame retardance.When used in LMBs,the Mg(OH)2 nanoflake coatings enable uniform Li+ distributing,which makes it homogeneous to deposit lithium,realizing effective dendrite suppression and less volume expansion.Meanwhile,Mg(OH)2 coatings can ensure LMBs are in normal conditions without thermal runaway until 140 ℃.A part of lithium can be converted into Li+ ions by Mg(OH)2 during repeated charge/discharge cycles,not only reducing the risk of separator damage and consequent short circuit,but also replenishing the capacity loss of LMBs.The Mg(OH)2 nanoflakes can coat on all kinds of commercial separators to improve their performances,which offers a facile but effective strategy for fabricating multifunctional separators and a comprehensive insight into enhancing LMB safety.展开更多
The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experime...The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases.展开更多
Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithiu...Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.展开更多
The phenomenon of phase separation into antiferromagnetic(AFM) and superconducting(SC) or normal-state regions has great implication for the origin of high-temperature(high-T_c) superconductivity. However, the o...The phenomenon of phase separation into antiferromagnetic(AFM) and superconducting(SC) or normal-state regions has great implication for the origin of high-temperature(high-T_c) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the T_c of(Li,Fe)OHFe Se superconductor is questioned. Here we report a systematic study on a series of(Li,Fe)OHFe Se single crystal samples with T_c up to ~41 K. We observe an evident drop in the static magnetization at T_(afm) ~ 125 K, in some of the SC(T_c 38 K, cell parameter c■9.27 ?) and non-SC samples. We verify that this AFM signal is intrinsic to(Li,Fe)OHFe Se. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal(below T_(afm)) or SC(below T_c) state in(Li,Fe)OHFe Se. We explain such coexistence by electronic phase separation, similar to that in high-T_c cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of(Li,Fe)OHFe Se, particularly it is never observed in the SC samples of T_c 38 K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. The occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as T_(afm), reported previously for a(Li,Fe)OHFe Se(T_c ~ 42 K) single crystal, suggests that the microscopic static phase separation reaches vanishing point in high T_c(Li,Fe)OHFe Se. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-T_c superconductivity.展开更多
通过显微组织观察、织构分析和拉伸测试等手段研究挤压比对双相Mg-8Li-6Zn-2Gd合金显微组织、织构和力学性能的影响。结果表明:均匀化态Mg-8Li-6Zn-2Gd合金中含有α-Mg、β-Li、Mg Li Zn、I相和W相。经热挤压后,共晶I相被碾碎成细小颗粒...通过显微组织观察、织构分析和拉伸测试等手段研究挤压比对双相Mg-8Li-6Zn-2Gd合金显微组织、织构和力学性能的影响。结果表明:均匀化态Mg-8Li-6Zn-2Gd合金中含有α-Mg、β-Li、Mg Li Zn、I相和W相。经热挤压后,共晶I相被碾碎成细小颗粒状,而W相保持原有块状形状。合金中α-Mg基体和β-Li基体在热挤压过程中均发生了动态再结晶(DRX),且晶粒随着挤压比的增加逐渐细化。经热挤压后,α-Mg基体的基面织构弱化和柱面织构增强是由于非基面滑移的激活;β-Li基体中形成明显的α和γ纤维织构主要与动态回复与动态再结晶相关。热挤压同时提升Mg-8Li-6Zn-2Gd合金的抗拉强度和伸长率,并在挤压比为16:1时获得最佳的综合力学性能。展开更多
A simple,sensitive and accurate RP-HPLC method for the separation and determination of eight lignans in Diphylleia sinensis was described.The method has been applied to the analysis of different samples.
基金Supported by a grant from Tianji Coal Chemical Group Co.Ltd.(Project no.2012-1978)Shenzhen Batian Ecological Engineering Co.,Ltd.(Project no.2013-0909).
文摘The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kinetics,and dynamic separation of Ca2+and Mg2+ions by strong acid cation resin,and the effects of phosphoric acid and nitric acid on the adsorption process were investigated.The results reveal that the adsorption process of Ca2+and Mg2+ions in pure water on resin is in good agreement with the Langmuir isotherm model and their maximal adsorption capacities are 1.86 mmol·g-1 and 1.83 mmol·g-1,respectively.The adsorption kinetics of Ca2+and Mg2+ions on resin fits better with the pseudo-first-order model,and the adsorption equilibrium in pure water is reached within 10 min contact time,while at the present of phosphoric acid,the adsorption rate of Ca2+and Mg2+ions on resin will go down.The dynamic separation experiments demonstrate that the designed column adsorption is able to undertake the separation of metal ions from the mix acids aqueous solution,but the dynamic operation should control the flow rate of mix acid solution.Besides nitric acid solution was proved to be effective to completely regenerate the spent resin and achieve the recyclable operation of separation process.
基金the National Natural Science Foundation of China (Nos. 52071179, 5227010325)the Natural Science Foundation of Jiangsu Province, China (No. BK20221493)the Fundamental Research Funds for the Central Universities, China (Nos. 30920021160, 30919011405)。
基金support from the National Science Foundation of China (No.51971249)the Natural Science Foundation of Shandong Province,China (No.ZR2020KE012)the Science and Technology Planning Project of Longkou City,China (No.2021KJJH025).
基金supported by the Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment (No. SKL202005)the Major Scientific and Technological Innovation Project of Luoyang,China(No. 2201029A)+1 种基金the National Natural Science Foundation of China (Nos. 51771115, 51775334)the Research Program of SAST-SJTU Joint Research Center of Advanced Spaceflight Technologies,China (No. USCAST2020-14)。
基金supported by the Natural Science Project from Science and Technology Department of Henan Province (172102410034)National Natural Science Foundation of China (NSFC-U1604120)。
文摘Dendrite growth and thermal runaway induce serious safety hazards,impeding the practical applications of lithium metal batteries(LMBs).Although extensive advances have been attained in terms of LMB safety,most work only focus on a single aspect at a time.This paper reports a multifunctional separator coated by Mg(OH)2 nanoflakes with various excellent properties including electrolyte wettability,ionic conductivity,Li+ transference number,puncture strength,thermal stability and flame retardance.When used in LMBs,the Mg(OH)2 nanoflake coatings enable uniform Li+ distributing,which makes it homogeneous to deposit lithium,realizing effective dendrite suppression and less volume expansion.Meanwhile,Mg(OH)2 coatings can ensure LMBs are in normal conditions without thermal runaway until 140 ℃.A part of lithium can be converted into Li+ ions by Mg(OH)2 during repeated charge/discharge cycles,not only reducing the risk of separator damage and consequent short circuit,but also replenishing the capacity loss of LMBs.The Mg(OH)2 nanoflakes can coat on all kinds of commercial separators to improve their performances,which offers a facile but effective strategy for fabricating multifunctional separators and a comprehensive insight into enhancing LMB safety.
基金financially supported by the Natural Science Foundation of Ningbo,China (No.2023J053)。
文摘The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases.
基金supported by the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environmentsthe National Natural Science Foundation of China(12002109)
文摘Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2017YFA0303003,2016YFA0300300 and 2015CB921000the National Natural Science Foundation of China under Grant Nos 11574370,11474338,11674374 and 61501220+1 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant Nos QYZDY-SSW-SLH001,QYZDY-SSW-SLH008 and XDB07020100the Beijing Municipal Science and Technology Project under Grant No Z161100002116011
文摘The phenomenon of phase separation into antiferromagnetic(AFM) and superconducting(SC) or normal-state regions has great implication for the origin of high-temperature(high-T_c) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the T_c of(Li,Fe)OHFe Se superconductor is questioned. Here we report a systematic study on a series of(Li,Fe)OHFe Se single crystal samples with T_c up to ~41 K. We observe an evident drop in the static magnetization at T_(afm) ~ 125 K, in some of the SC(T_c 38 K, cell parameter c■9.27 ?) and non-SC samples. We verify that this AFM signal is intrinsic to(Li,Fe)OHFe Se. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal(below T_(afm)) or SC(below T_c) state in(Li,Fe)OHFe Se. We explain such coexistence by electronic phase separation, similar to that in high-T_c cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of(Li,Fe)OHFe Se, particularly it is never observed in the SC samples of T_c 38 K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. The occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as T_(afm), reported previously for a(Li,Fe)OHFe Se(T_c ~ 42 K) single crystal, suggests that the microscopic static phase separation reaches vanishing point in high T_c(Li,Fe)OHFe Se. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-T_c superconductivity.
基金financial supports from the Open Project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials,Ministry of Education,China (Nos. GFST2021KF04, GFST2021KF09)the Natural Science Research Project of Anhui Educational Committee,China (Nos. KJ2021A0394, KJ2021A0395)Anhui Provincial Natural Science Foundation,China (No. 2208085QE124)。
文摘通过显微组织观察、织构分析和拉伸测试等手段研究挤压比对双相Mg-8Li-6Zn-2Gd合金显微组织、织构和力学性能的影响。结果表明:均匀化态Mg-8Li-6Zn-2Gd合金中含有α-Mg、β-Li、Mg Li Zn、I相和W相。经热挤压后,共晶I相被碾碎成细小颗粒状,而W相保持原有块状形状。合金中α-Mg基体和β-Li基体在热挤压过程中均发生了动态再结晶(DRX),且晶粒随着挤压比的增加逐渐细化。经热挤压后,α-Mg基体的基面织构弱化和柱面织构增强是由于非基面滑移的激活;β-Li基体中形成明显的α和γ纤维织构主要与动态回复与动态再结晶相关。热挤压同时提升Mg-8Li-6Zn-2Gd合金的抗拉强度和伸长率,并在挤压比为16:1时获得最佳的综合力学性能。
文摘A simple,sensitive and accurate RP-HPLC method for the separation and determination of eight lignans in Diphylleia sinensis was described.The method has been applied to the analysis of different samples.