Spherical flower-like Mg(OH)_(2) was fabricated from MgSO_(4) effluent and its adsorption performance for heavy metal ions was evaluated.The appropriate fabrication conditions are as follows:Mg^(2+)/NH4OH molar ratio ...Spherical flower-like Mg(OH)_(2) was fabricated from MgSO_(4) effluent and its adsorption performance for heavy metal ions was evaluated.The appropriate fabrication conditions are as follows:Mg^(2+)/NH4OH molar ratio of 1:0.5,temperature of 120°C and time of 1 h at Mg^(2+)concentration of 2 mol/L.Spherical flower-like Mg(OH)_(2) composed of ultra-thin sheets exhibits an excellent adsorption ability for Ni^(2+),Cu^(2+),Zn^(2+),Pb^(2+),Fe^(3+)and Co^(2+),and the adsorption reaches the equilibrium in 6 min.The maximum adsorption capacities of the studied heavy metal ions onto Mg(OH)_(2) at 20°C are 58.55,85.84,44.94,485.44,625.00 and 27.86 mg/g,respectively.The adsorption is well fitted by the Langmuir model,indicating that the adsorption is monolayer.The adsorption kinetics follows the pseudo-second-order model.Chemisorption is the operative mechanism.Spherical flower-like Mg(OH)_(2) is a qualified candidate for heavy metal ions removal.展开更多
A leaching experiment was carried out with repacked soil columns in laboratory to stndy the leachingprocess of a red soil derived from sandstone as affected by warions fertilization practices. The treatments wereCK (a...A leaching experiment was carried out with repacked soil columns in laboratory to stndy the leachingprocess of a red soil derived from sandstone as affected by warions fertilization practices. The treatments wereCK (as a control), CaCO_3, CaSO_4, MgCO_3, Ca(H_2PO_4)_2, Urea, KCl, Mnltiple (a mixture of the above-mentioned fertilizers), and KNO_3. The fertilizers were added to the bare surface of the soil columns, andthen the columns were leached with 120 mL deionized water daily through peristaltic pumps over a periodof 92 days. At the end of leaching process, soils were sampled from different depths of the soil profiles, i.e.,0-5 cm, 5-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. The results showed when applying Ca, Mg, andK to the bare surface of the soil columns, exchangeable Ca ̄(2+), Mg ̄(2+), and K ̄+ in the upper layer of thesoil profile increased correspondingly, with an extent depending mainly on the application rates of Ca, Mg,and K and showing a downward trend. CaCO_3, CaSO_4, MgCO_3, and Ca(H_2PO_4)_2 treatments had scarcelyany effect on movement of exchangeable K ̄+, while CaCO_3, and CaSO_4 treatments significantly promotedthe downward movement of exchangeable Mg ̄(2+) although these two treatments had no obvious effect onleaching losses of Mg. The fact that under Urea treatment, exchangeable Ca ̄(2+) and Mg ̄(2+) were higheras compared to CK treatment showed urea could prevent leaching of exchangeable Ca ̄(2+) and Mg ̄(2+). Theobvious downward movement of exchangeable Ca ̄(2+) and Mg ̄(2+) was noticed in KCl treatment. In Multipletreatment, the downward movement of exchangeable Ca ̄(2+) and Mg ̄(2+) was evident, while that of K ̄+ was lessevident. Application of KNO_3 strongly promoted the downward movement of exchangeable Ca ̄(2+) and Mg ̄(2+)in the soil profile.展开更多
The complexity of calcareous deposits processes in a marine environment results in simultaneous effects of the following parameters: temperature, polarization potential, interfacial pH, chemical composition, etc.. Th...The complexity of calcareous deposits processes in a marine environment results in simultaneous effects of the following parameters: temperature, polarization potential, interfacial pH, chemical composition, etc.. The comprehension of these processes implies studies in artificial seawater and a follow-up of the parameters by voltarnperometry and chronoamperometry. Calcareous deposits electrochemically are very often used to follow up the evolution of scale deposition in desalination circuits. Again, the scale formation is brought about by electrochemical reduction of dissolved oxygen. The hydroxyl ions formed on the metallic surface engender a rise of interfacial pH which causes calcareous deposition (CaCOs and Mg(OH)2). This reaction goes with reaction of hydrogen evolution which could disrupt the formed deposit, A study is carried out in a solution of seawater ASTM without calcium and without magnesium (so that the deposit will not be formed) on a titanium rotating disk electrode monitored between 300 and 1000 rpm. Study shows that Levich criterion is checked for the four values of selected potential on the diffusion plateau and a very cathodic polarization potential and a high temperature favors hydrogen current rate.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51774070 and 52004165)the Science and Technology Project of Yunnan Province, China (No. 202101AS070029)
文摘Spherical flower-like Mg(OH)_(2) was fabricated from MgSO_(4) effluent and its adsorption performance for heavy metal ions was evaluated.The appropriate fabrication conditions are as follows:Mg^(2+)/NH4OH molar ratio of 1:0.5,temperature of 120°C and time of 1 h at Mg^(2+)concentration of 2 mol/L.Spherical flower-like Mg(OH)_(2) composed of ultra-thin sheets exhibits an excellent adsorption ability for Ni^(2+),Cu^(2+),Zn^(2+),Pb^(2+),Fe^(3+)and Co^(2+),and the adsorption reaches the equilibrium in 6 min.The maximum adsorption capacities of the studied heavy metal ions onto Mg(OH)_(2) at 20°C are 58.55,85.84,44.94,485.44,625.00 and 27.86 mg/g,respectively.The adsorption is well fitted by the Langmuir model,indicating that the adsorption is monolayer.The adsorption kinetics follows the pseudo-second-order model.Chemisorption is the operative mechanism.Spherical flower-like Mg(OH)_(2) is a qualified candidate for heavy metal ions removal.
文摘A leaching experiment was carried out with repacked soil columns in laboratory to stndy the leachingprocess of a red soil derived from sandstone as affected by warions fertilization practices. The treatments wereCK (as a control), CaCO_3, CaSO_4, MgCO_3, Ca(H_2PO_4)_2, Urea, KCl, Mnltiple (a mixture of the above-mentioned fertilizers), and KNO_3. The fertilizers were added to the bare surface of the soil columns, andthen the columns were leached with 120 mL deionized water daily through peristaltic pumps over a periodof 92 days. At the end of leaching process, soils were sampled from different depths of the soil profiles, i.e.,0-5 cm, 5-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. The results showed when applying Ca, Mg, andK to the bare surface of the soil columns, exchangeable Ca ̄(2+), Mg ̄(2+), and K ̄+ in the upper layer of thesoil profile increased correspondingly, with an extent depending mainly on the application rates of Ca, Mg,and K and showing a downward trend. CaCO_3, CaSO_4, MgCO_3, and Ca(H_2PO_4)_2 treatments had scarcelyany effect on movement of exchangeable K ̄+, while CaCO_3, and CaSO_4 treatments significantly promotedthe downward movement of exchangeable Mg ̄(2+) although these two treatments had no obvious effect onleaching losses of Mg. The fact that under Urea treatment, exchangeable Ca ̄(2+) and Mg ̄(2+) were higheras compared to CK treatment showed urea could prevent leaching of exchangeable Ca ̄(2+) and Mg ̄(2+). Theobvious downward movement of exchangeable Ca ̄(2+) and Mg ̄(2+) was noticed in KCl treatment. In Multipletreatment, the downward movement of exchangeable Ca ̄(2+) and Mg ̄(2+) was evident, while that of K ̄+ was lessevident. Application of KNO_3 strongly promoted the downward movement of exchangeable Ca ̄(2+) and Mg ̄(2+)in the soil profile.
文摘The complexity of calcareous deposits processes in a marine environment results in simultaneous effects of the following parameters: temperature, polarization potential, interfacial pH, chemical composition, etc.. The comprehension of these processes implies studies in artificial seawater and a follow-up of the parameters by voltarnperometry and chronoamperometry. Calcareous deposits electrochemically are very often used to follow up the evolution of scale deposition in desalination circuits. Again, the scale formation is brought about by electrochemical reduction of dissolved oxygen. The hydroxyl ions formed on the metallic surface engender a rise of interfacial pH which causes calcareous deposition (CaCOs and Mg(OH)2). This reaction goes with reaction of hydrogen evolution which could disrupt the formed deposit, A study is carried out in a solution of seawater ASTM without calcium and without magnesium (so that the deposit will not be formed) on a titanium rotating disk electrode monitored between 300 and 1000 rpm. Study shows that Levich criterion is checked for the four values of selected potential on the diffusion plateau and a very cathodic polarization potential and a high temperature favors hydrogen current rate.