The origin of boron in boron-rich salt lakes in the Tibetan Plateau is highly controversial.In this study,we carried out a detailed study on boron geochemistry and isotope composition of lake sediments collected in Zi...The origin of boron in boron-rich salt lakes in the Tibetan Plateau is highly controversial.In this study,we carried out a detailed study on boron geochemistry and isotope composition of lake sediments collected in Zigetang Co,central Tibet.Evaporites had high boron concentrations of 172.3–418.6 lg/g and δ^(11)B values of-8.2%to-3.3%,suggesting a non-marine origin for the saline lake.The boron isotopic fractionation factor,a,between evaporite and brackish water(a_(evaporite–brackish))decreased systematically with depth,from 0.9942 at the top of the drill core to 0.9893 at the bottom;the linear variation between α_(evaporite–brackish)and depth reflects boron isotopic fractionation associated with progressive crystallization.The positive correlation between δ^(11)B versus[B]and δ^(11)B versus depth in the evaporite phase reflects pH and boron speciation in the solution control on the adsorption of boron,and B(OH)_3 species incorporated preferentially into Mg(OH)_2 precipitation at high pH.展开更多
基金supported by the National Basic Research Program(973 project)of China(2013CB956401)the National Natural Science Foundation of China(Grant Nos.41210004,41661144042)
文摘The origin of boron in boron-rich salt lakes in the Tibetan Plateau is highly controversial.In this study,we carried out a detailed study on boron geochemistry and isotope composition of lake sediments collected in Zigetang Co,central Tibet.Evaporites had high boron concentrations of 172.3–418.6 lg/g and δ^(11)B values of-8.2%to-3.3%,suggesting a non-marine origin for the saline lake.The boron isotopic fractionation factor,a,between evaporite and brackish water(a_(evaporite–brackish))decreased systematically with depth,from 0.9942 at the top of the drill core to 0.9893 at the bottom;the linear variation between α_(evaporite–brackish)and depth reflects boron isotopic fractionation associated with progressive crystallization.The positive correlation between δ^(11)B versus[B]and δ^(11)B versus depth in the evaporite phase reflects pH and boron speciation in the solution control on the adsorption of boron,and B(OH)_3 species incorporated preferentially into Mg(OH)_2 precipitation at high pH.