(Ca, Mg)-α′-Sialon-AlN-BN powders were synthesized by the carbothermal reduction and nitridation (CRN) method using boron-rich slag, one of the intermediate products from pyrometallurgy separation of pageit, as the ...(Ca, Mg)-α′-Sialon-AlN-BN powders were synthesized by the carbothermal reduction and nitridation (CRN) method using boron-rich slag, one of the intermediate products from pyrometallurgy separation of pageit, as the staring material. The influences of synthesis temperature and holding time on the phase composition and microstructure during the microwave CRN were studied by XRD, SEM and EDS. The comparison between two heating techniques, conventional and microwave heating, on the synthesized powder was presented as well. The experimental results revealed that the phase compositions and microstructures of the synthesized products were greatly affected by the synthesis temperature and holding time. With an increase in the synthesis temperature or holding time, the relative amount of α′-Sialon increased and α′-Sialon became the main crystalline phase at 1400 °C for 6 h. The synthesized products also contained AlN, BN and a small amount of β-SiC. Elongated α′-Sialon grains, short rod AlN grains, aggregate nanoscale BN grains were observed in the synthesized powders. The reaction temperature of microwave heating method was reduced by 80 °C, the reaction time was shortened by 2 h, and more elongated α′-Sialon grains with large aspect ratio were observed.展开更多
Porous Ti-Mg composites were successfully fabricated through powder metallurgy processing with ammonium hydrogen carbonate (NH4HCO3) as a space-holder. The effects of NH4HCO3 on properties of porous composites were ...Porous Ti-Mg composites were successfully fabricated through powder metallurgy processing with ammonium hydrogen carbonate (NH4HCO3) as a space-holder. The effects of NH4HCO3 on properties of porous composites were comprehensively investigated. The pore characteristics and compressive properties of the specimens were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the porosity of the porous composites can be tailored effectively by changing the amount of NH4HCO3 added, and the use of NI-I4HCO3 has no influence on the microstructure and phase constituents of the Ti-10%Mg porous composites. The open porosity and compressive strength as well as compressive elastic modulus vary with the adding amount and particle size of NHaHCO3. When the mass fraction of NHaHCO3 added is 25%, elastic modulus and compressive strength of composites with porosity of around 50% are found to be similar to those of human bone.展开更多
In this work,a novel ultrahigh-strength Al-10Zn-3.5Mg-1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion.Investigations on microstructural evolution and mechanical properties of the fabricated s...In this work,a novel ultrahigh-strength Al-10Zn-3.5Mg-1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion.Investigations on microstructural evolution and mechanical properties of the fabricated samples were carried out.The results show that the grain size of sintered samples matches with the powder particles after ball milling.The relative densities of sintered and hot extruded samples reach 99.1%and 100%,respectively.Owing to the comprehensive mechanism of grain refinement,aging and dispersion strengthening,the ultimate tensile strength,yield strength and elongation of the Al-10Zn-3.5Mg-1.5Cu alloy after hot extrusion and subsequent heat treatment achieve 810 MPa,770 MPa and 8%,respectively.展开更多
Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure...Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope(OM) and scanning electron microscope(SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength(TRS) of sintered materials decreased with greater Mg content(Al-3Cu-2.5Mg). However, Al-3Cu-0.5Mg alloy exhibited moderate TRS but higher specific strength than Al-3Cu without Mg addition.展开更多
Magnesium oxysulfate (MgSO4·5Mg(OH)2·2H2O) flake powders with an average diameter of 2 ~tm and a thickness of 0.052 μm were prepared using magnesium sulfate and sodium hydroxide as raw materials by hydr...Magnesium oxysulfate (MgSO4·5Mg(OH)2·2H2O) flake powders with an average diameter of 2 ~tm and a thickness of 0.052 μm were prepared using magnesium sulfate and sodium hydroxide as raw materials by hydrothermal synthesis process. The composition, morphology and structural features of the hydrothermal products were examined with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that in the conditions of n(NaOH)/n(MgSO4) of 1.25, the dosage of w(Na3PO4) crystal additives of 1.0% w(MgSO4), stirring for 5 h at 180 ℃, the morphology of MgSO4·5Mg(OH)2·2H2O products is flaky and laminar, which is a kind of complex magnesium singlecrystal. The recycling of MgSO4 mother liquor was also investigated to make a full use of the materials and reduce disposal. The results prove that there is no adverse effect on the yield and purity of the products.展开更多
The present study aims to fabricate and evaluate the mechanical properties and wear behavior of Mg metal matrix composite,reinforced by 0,1.5,3,5 and 10 vol.%B4C microparticles.Mg−B4C samples were fabricated at 450℃ ...The present study aims to fabricate and evaluate the mechanical properties and wear behavior of Mg metal matrix composite,reinforced by 0,1.5,3,5 and 10 vol.%B4C microparticles.Mg−B4C samples were fabricated at 450℃ and under different loading rates by using split Hopkinson bar(SHB),drop hammer(DH)and Instron(QS)at strain rates of 1600,800 and 0.008 s–1,respectively.The mechanical properties including microhardness,quasi-static and dynamic compressive strengths and wear behavior of samples were experimentally investigated.The results show that,the hardness of SHB and DH samples is obtained to be 20.2%and 5.7%higher than that of the QS sample,respectively.The wear rate and wear mass loss of Mg–10.0%B4C samples fabricated by SHB were determined lower than those of the QS sample by nearly 33%and 39%,respectively.The quasi-static compressive strengths of Mg−5.0%B4C are improved by 39%,30%and 29%for the SHB,DH and QS samples,respectively,in comparison with the case of pure Mg.Furthermore,it is discovered that the dynamic compressive strength of samples is 51%−110%higher than their quasi-static value with respect to the B4C content.展开更多
基金Project (2006AA06Z368) supported by High-tech Research and Development Programs of ChinaProject (N100402007) supported by the Fundamental Research Funds for the Central Universities in China
文摘(Ca, Mg)-α′-Sialon-AlN-BN powders were synthesized by the carbothermal reduction and nitridation (CRN) method using boron-rich slag, one of the intermediate products from pyrometallurgy separation of pageit, as the staring material. The influences of synthesis temperature and holding time on the phase composition and microstructure during the microwave CRN were studied by XRD, SEM and EDS. The comparison between two heating techniques, conventional and microwave heating, on the synthesized powder was presented as well. The experimental results revealed that the phase compositions and microstructures of the synthesized products were greatly affected by the synthesis temperature and holding time. With an increase in the synthesis temperature or holding time, the relative amount of α′-Sialon increased and α′-Sialon became the main crystalline phase at 1400 °C for 6 h. The synthesized products also contained AlN, BN and a small amount of β-SiC. Elongated α′-Sialon grains, short rod AlN grains, aggregate nanoscale BN grains were observed in the synthesized powders. The reaction temperature of microwave heating method was reduced by 80 °C, the reaction time was shortened by 2 h, and more elongated α′-Sialon grains with large aspect ratio were observed.
文摘Porous Ti-Mg composites were successfully fabricated through powder metallurgy processing with ammonium hydrogen carbonate (NH4HCO3) as a space-holder. The effects of NH4HCO3 on properties of porous composites were comprehensively investigated. The pore characteristics and compressive properties of the specimens were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the porosity of the porous composites can be tailored effectively by changing the amount of NH4HCO3 added, and the use of NI-I4HCO3 has no influence on the microstructure and phase constituents of the Ti-10%Mg porous composites. The open porosity and compressive strength as well as compressive elastic modulus vary with the adding amount and particle size of NHaHCO3. When the mass fraction of NHaHCO3 added is 25%, elastic modulus and compressive strength of composites with porosity of around 50% are found to be similar to those of human bone.
基金Project(FRF-GF-19-012AZ)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this work,a novel ultrahigh-strength Al-10Zn-3.5Mg-1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion.Investigations on microstructural evolution and mechanical properties of the fabricated samples were carried out.The results show that the grain size of sintered samples matches with the powder particles after ball milling.The relative densities of sintered and hot extruded samples reach 99.1%and 100%,respectively.Owing to the comprehensive mechanism of grain refinement,aging and dispersion strengthening,the ultimate tensile strength,yield strength and elongation of the Al-10Zn-3.5Mg-1.5Cu alloy after hot extrusion and subsequent heat treatment achieve 810 MPa,770 MPa and 8%,respectively.
基金Project(NRF-2012R1A1A1012983) supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT&Future PlanningProject supported by the New Faculty Research Fund of Ajou University,Korea
文摘Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope(OM) and scanning electron microscope(SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength(TRS) of sintered materials decreased with greater Mg content(Al-3Cu-2.5Mg). However, Al-3Cu-0.5Mg alloy exhibited moderate TRS but higher specific strength than Al-3Cu without Mg addition.
基金Project(50704036) supported by the National Natural Science Foundation of ChinaProject(08JJ3027) supported by the Natural Science Foundation of Hunan Province, China
文摘Magnesium oxysulfate (MgSO4·5Mg(OH)2·2H2O) flake powders with an average diameter of 2 ~tm and a thickness of 0.052 μm were prepared using magnesium sulfate and sodium hydroxide as raw materials by hydrothermal synthesis process. The composition, morphology and structural features of the hydrothermal products were examined with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that in the conditions of n(NaOH)/n(MgSO4) of 1.25, the dosage of w(Na3PO4) crystal additives of 1.0% w(MgSO4), stirring for 5 h at 180 ℃, the morphology of MgSO4·5Mg(OH)2·2H2O products is flaky and laminar, which is a kind of complex magnesium singlecrystal. The recycling of MgSO4 mother liquor was also investigated to make a full use of the materials and reduce disposal. The results prove that there is no adverse effect on the yield and purity of the products.
文摘The present study aims to fabricate and evaluate the mechanical properties and wear behavior of Mg metal matrix composite,reinforced by 0,1.5,3,5 and 10 vol.%B4C microparticles.Mg−B4C samples were fabricated at 450℃ and under different loading rates by using split Hopkinson bar(SHB),drop hammer(DH)and Instron(QS)at strain rates of 1600,800 and 0.008 s–1,respectively.The mechanical properties including microhardness,quasi-static and dynamic compressive strengths and wear behavior of samples were experimentally investigated.The results show that,the hardness of SHB and DH samples is obtained to be 20.2%and 5.7%higher than that of the QS sample,respectively.The wear rate and wear mass loss of Mg–10.0%B4C samples fabricated by SHB were determined lower than those of the QS sample by nearly 33%and 39%,respectively.The quasi-static compressive strengths of Mg−5.0%B4C are improved by 39%,30%and 29%for the SHB,DH and QS samples,respectively,in comparison with the case of pure Mg.Furthermore,it is discovered that the dynamic compressive strength of samples is 51%−110%higher than their quasi-static value with respect to the B4C content.