The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show th...The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5)eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5)phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2)phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5)phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with theα-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2)phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5)phase,exhibits better corrosion resistance performance.展开更多
The corrosion behaviors of Mg-10Gd-4.8Y-0.6Zr extruded-alloys with various ageing time were investigated by immersion test and electrochemical measurements.The results show that the corrosion rate of the experimental ...The corrosion behaviors of Mg-10Gd-4.8Y-0.6Zr extruded-alloys with various ageing time were investigated by immersion test and electrochemical measurements.The results show that the corrosion rate of the experimental alloy decreases with the increase of ageing time from 0 to 108 h.The corrosion resistance of the experimental alloy was found to increase with the increase of the size of the precipitate phases.The open circuit potential of the experimental alloy increases with the increase of the ageing time.The potentiodynamic polarization curves show that the cathodic over-potential increases with the increase of ageing time,leading to a decrease in the current density of anodic current plateau with the increase of ageing time.展开更多
Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stres...Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stress loading method affects creep aging of Mg alloys is still unclear. In this paper, the microstructural evolution of precipitated phases and precipitation-free zones(PFZ) at grain boundaries with different stress loading modes(unstressed, unidirectional tensile stress, and cyclic stress) at 250 ℃ were investigated along with changes in mechanical properties. The results showed that the addition of stress during aging effectively promoted the precipitation of precipitated phases, while unaffecting grain size. Unidirectional tensile stress caused directional growth of β phase([1010]), as well as rotation of weave towards the basal plane texture, resulting in namely stress orientation effect. Solute atoms diffused in the direction of tensile stress while vacancies moved perpendicular to the direction of tensile stress, resulting in PFZ at grain boundaries(157.06 nm). By contrast, cyclic stresses led to the growth of β phase in three directions([1010], [1100] and [0110]). The solute atoms and vacancies were uniformly distributed in the Mg matrix instead of directional diffusion, effectively reducing the width of PFZ(112.39 nm) at the grain boundary. These features significantly improved the mechanical properties of alloy specimens after cyclic stress creep aging when compared to unidirectional stress creep aging, with yield strength(YS), ultimate tensile strength(UTS), and elongation(EL) enhanced from 171.6 MPa, 305.5 MPa, and 4.4%to 174.8 MPa, 326.3 MPa, and 6.9%, respectively.展开更多
Thermal analysis was used to investigate the microstructural evolution of Mg-7 Zn-x Cu-0.6 Zr alloys during solidification. The effect of Cu content(0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of th...Thermal analysis was used to investigate the microstructural evolution of Mg-7 Zn-x Cu-0.6 Zr alloys during solidification. The effect of Cu content(0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of the Mg-7 Zn-x Cu-0.6 Zr alloys was investigated with a constrained rod casting(CRC) apparatus, equipped with a load sensor and a data acquisition system. The thermal analysis results of Mg-7 Zn-x Cu-0.6 Zr alloy revealed that the alloy consisted of two distinct phases: α-Mg and Mg Zn2. Three distinct peaks were observed in the alloys with Cu addition, which were identified as α-Mg, Mg Zn Cu and Mg Zn2. In addition, the reaction temperature of α-Mg decreased and the reaction temperatures of Mg Zn2 and Mg Zn Cu increased as the Cu content increased. The experimental results of hot tearing demonstrated that the addition of Cu significantly reduced the hot tearing susceptibility(HTS) of Mg-7 Zn-x Cu-0.6 Zr alloys due to the higher eutectic temperature and the shorter solidification temperature region.展开更多
The effects of two different casting methods on the microstructures and mechanical properties of as-cast and T6-cast states of Mg-10Gd-3Y-0.6Zr alloy were studied by using metal mold casting and squeeze casting.The re...The effects of two different casting methods on the microstructures and mechanical properties of as-cast and T6-cast states of Mg-10Gd-3Y-0.6Zr alloy were studied by using metal mold casting and squeeze casting.The results show that the microstructure of Mg-10Gd-3Y-0.6Zr alloy is mainly composed ofα-Mg primary phase and Mg 24(Gd,Y)5 eutectic phase.The squeeze cast grains are small with a dendrite like morphology,and the tensile strength of the alloy in T6 state can reach 285 MPa.While the metal grains are coarse,the eutectic phases are distributed in the grain boundary,and the tensile strength of the alloy in T6 state is only 250 MPa.展开更多
The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were invest...The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were investigated. The optimum T6 heat treatments for sand-cast Mg-10Gd-3Y-0.5Zr alloy are (525 ℃, 12 h+225 ℃, 14 h) and (525 ℃, 12 h+250 ℃, 12 h) according to age hardening curve and mechanical properties, respectively. The ultimate tensile strength, yield strength and elongation of the Mg-10Gd-3Y-0.5Zr alloy treated by the two optimum T6 processes are 339.9 MPa, 251.6 MPa, 1.5%and 359.6 MPa, 247.3 MPa, 2.7%, respectively. The tensile fracture mode of peak-aged Mg-10Gd-3Y-0.5Zr alloy is transgranular quasi-cleavage fracture.展开更多
Influence of heat treatment on the microstructures and mechanical properties of sand-cast Mg-4Y-2Nd-1Gd-0.4Zr magnesium alloy was investigated,and the tensile fracture mechanisms of the studied alloys under different ...Influence of heat treatment on the microstructures and mechanical properties of sand-cast Mg-4Y-2Nd-1Gd-0.4Zr magnesium alloy was investigated,and the tensile fracture mechanisms of the studied alloys under different conditions were also discussed.The results show that the optimum T4 and T6 heat treatment conditions for the as-cast Mg-4Y-2Nd-1Gd-0.4Zr alloy are 525°C,8 h and(525°C,8 h)+(225°C,16 h),respectively,with regard to the microstructure observation,DSC heating curve and mechanical properties.The hardness,yield strength,ultimate tensile strength and elongation of the Mg-4Y-2Nd-1Gd-0.4Zr alloy treated by optimum T6 heat treatment are HV91,180 MPa,297 MPa and 7.4%,respectively.Moreover,the Mg-4Y-2Nd-1Gd-0.4Zr alloys under different heat treatment conditions exhibit different tensile fracture modes.展开更多
The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates ...The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates the mean grain size of 15 μm for the extruded and 100 μm for the as-cast Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys. The corrosion morphology of as-cast sample shows pitting corrosion and little filiform corrosion, but that of the extruded sample shows pitting corrosion at the initial stage. The corrosion rate of extruded sample is higher than that of as-cast Mg-5Y-7Gd-1Nd-0.5Zr alloy according to the immersion test. The second phases containing RE acting as cathodes improve the corrosion properties. The corrosion potentials of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr alloys are -1.658 V and -1.591 V, respectively. The origins of the distinctive corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr Mg alloys were discussed.展开更多
基金supported by the Key Project of Equipment Pre-research Field Fund under Grant No.61409230407.
文摘The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5)eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5)phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2)phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5)phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with theα-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2)phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5)phase,exhibits better corrosion resistance performance.
基金Project(51074186) supported by the National Natural Science Foundation of China
文摘The corrosion behaviors of Mg-10Gd-4.8Y-0.6Zr extruded-alloys with various ageing time were investigated by immersion test and electrochemical measurements.The results show that the corrosion rate of the experimental alloy decreases with the increase of ageing time from 0 to 108 h.The corrosion resistance of the experimental alloy was found to increase with the increase of the size of the precipitate phases.The open circuit potential of the experimental alloy increases with the increase of the ageing time.The potentiodynamic polarization curves show that the cathodic over-potential increases with the increase of ageing time,leading to a decrease in the current density of anodic current plateau with the increase of ageing time.
基金supported by Natural Science Foundation of Shanxi province (20210302123135,20210302123163)Science and Technology Major Project of Shanxi province (20191102008)+6 种基金Scientific and Technological Achievements Transformation Guidance Special Project of Shanxi province (202104021301022)The Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant (No.075-15-2022-1133)the National Research Foundation (NRF) grant funded by the Ministry of Science and ICT (2015R1A2A1A01006795) of Korea through the Research Institute of Advanced MaterialsThe central government guided local science and technology development projects (YDZJSX2021A010)China Postdoctoral Science Foundation (2022M710541)the projects of International Cooperation in Shanxi (201803D421086)Research Project Supported by Shanxi Scholarship Council of China (2022- 038)。
文摘Creep aging forming(CAF) is a potential process used to manufacture large integral components of magnesium(Mg) alloys. The selected stress plays a crucial role in creep aging processes but the mechanism by which stress loading method affects creep aging of Mg alloys is still unclear. In this paper, the microstructural evolution of precipitated phases and precipitation-free zones(PFZ) at grain boundaries with different stress loading modes(unstressed, unidirectional tensile stress, and cyclic stress) at 250 ℃ were investigated along with changes in mechanical properties. The results showed that the addition of stress during aging effectively promoted the precipitation of precipitated phases, while unaffecting grain size. Unidirectional tensile stress caused directional growth of β phase([1010]), as well as rotation of weave towards the basal plane texture, resulting in namely stress orientation effect. Solute atoms diffused in the direction of tensile stress while vacancies moved perpendicular to the direction of tensile stress, resulting in PFZ at grain boundaries(157.06 nm). By contrast, cyclic stresses led to the growth of β phase in three directions([1010], [1100] and [0110]). The solute atoms and vacancies were uniformly distributed in the Mg matrix instead of directional diffusion, effectively reducing the width of PFZ(112.39 nm) at the grain boundary. These features significantly improved the mechanical properties of alloy specimens after cyclic stress creep aging when compared to unidirectional stress creep aging, with yield strength(YS), ultimate tensile strength(UTS), and elongation(EL) enhanced from 171.6 MPa, 305.5 MPa, and 4.4%to 174.8 MPa, 326.3 MPa, and 6.9%, respectively.
基金Projects(51504153,51571145) supported by the National Natural Science Foundation of ChinaProject(L2015397) supported by the General Project of Scientific Research of the Education Department of Liaoning Province,China
文摘Thermal analysis was used to investigate the microstructural evolution of Mg-7 Zn-x Cu-0.6 Zr alloys during solidification. The effect of Cu content(0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of the Mg-7 Zn-x Cu-0.6 Zr alloys was investigated with a constrained rod casting(CRC) apparatus, equipped with a load sensor and a data acquisition system. The thermal analysis results of Mg-7 Zn-x Cu-0.6 Zr alloy revealed that the alloy consisted of two distinct phases: α-Mg and Mg Zn2. Three distinct peaks were observed in the alloys with Cu addition, which were identified as α-Mg, Mg Zn Cu and Mg Zn2. In addition, the reaction temperature of α-Mg decreased and the reaction temperatures of Mg Zn2 and Mg Zn Cu increased as the Cu content increased. The experimental results of hot tearing demonstrated that the addition of Cu significantly reduced the hot tearing susceptibility(HTS) of Mg-7 Zn-x Cu-0.6 Zr alloys due to the higher eutectic temperature and the shorter solidification temperature region.
基金International Cooperation Project of the Ministry of Science and Technology of China(No.2014DFA50320)National Natural Science Foundation of China(Nos.51674226,51574207,51574206,51204147,51274175)International Science and Technology Cooperation Project of Shanxi Province(Nos.2013081017,2012081013)
文摘The effects of two different casting methods on the microstructures and mechanical properties of as-cast and T6-cast states of Mg-10Gd-3Y-0.6Zr alloy were studied by using metal mold casting and squeeze casting.The results show that the microstructure of Mg-10Gd-3Y-0.6Zr alloy is mainly composed ofα-Mg primary phase and Mg 24(Gd,Y)5 eutectic phase.The squeeze cast grains are small with a dendrite like morphology,and the tensile strength of the alloy in T6 state can reach 285 MPa.While the metal grains are coarse,the eutectic phases are distributed in the grain boundary,and the tensile strength of the alloy in T6 state is only 250 MPa.
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProject(USCAST2012-15)supported by the Funded Projects of SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProject(20120073120011)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The microstructure, mechanical properties and fracture behavior of sand-cast Mg-10Gd-3Y-0.5Zr alloy (mass fraction,%) under T6 condition (air cooling after solid solution and then aging heat treatment) were investigated. The optimum T6 heat treatments for sand-cast Mg-10Gd-3Y-0.5Zr alloy are (525 ℃, 12 h+225 ℃, 14 h) and (525 ℃, 12 h+250 ℃, 12 h) according to age hardening curve and mechanical properties, respectively. The ultimate tensile strength, yield strength and elongation of the Mg-10Gd-3Y-0.5Zr alloy treated by the two optimum T6 processes are 339.9 MPa, 251.6 MPa, 1.5%and 359.6 MPa, 247.3 MPa, 2.7%, respectively. The tensile fracture mode of peak-aged Mg-10Gd-3Y-0.5Zr alloy is transgranular quasi-cleavage fracture.
基金Project(0502)supported by the Aerospace Science and Technology Innovation Fund of China Aerospace Science and Technology CorporationProject(2007CB613701)supported by the National Basic Research Program of ChinaProject(2009AA033501)supported by the National High-tech Research and Development Program of China
文摘Influence of heat treatment on the microstructures and mechanical properties of sand-cast Mg-4Y-2Nd-1Gd-0.4Zr magnesium alloy was investigated,and the tensile fracture mechanisms of the studied alloys under different conditions were also discussed.The results show that the optimum T4 and T6 heat treatment conditions for the as-cast Mg-4Y-2Nd-1Gd-0.4Zr alloy are 525°C,8 h and(525°C,8 h)+(225°C,16 h),respectively,with regard to the microstructure observation,DSC heating curve and mechanical properties.The hardness,yield strength,ultimate tensile strength and elongation of the Mg-4Y-2Nd-1Gd-0.4Zr alloy treated by optimum T6 heat treatment are HV91,180 MPa,297 MPa and 7.4%,respectively.Moreover,the Mg-4Y-2Nd-1Gd-0.4Zr alloys under different heat treatment conditions exhibit different tensile fracture modes.
基金Project (2011BAE22B01) supported by the National Key Technology R&D Program of China
文摘The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates the mean grain size of 15 μm for the extruded and 100 μm for the as-cast Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys. The corrosion morphology of as-cast sample shows pitting corrosion and little filiform corrosion, but that of the extruded sample shows pitting corrosion at the initial stage. The corrosion rate of extruded sample is higher than that of as-cast Mg-5Y-7Gd-1Nd-0.5Zr alloy according to the immersion test. The second phases containing RE acting as cathodes improve the corrosion properties. The corrosion potentials of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr alloys are -1.658 V and -1.591 V, respectively. The origins of the distinctive corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr Mg alloys were discussed.