The effects of RE on the microstrcture of as-cast Mg-8Zn-4Al magnesium alloys were investigated. The results show that the solidification range of Mg-8Zn-4Al-xRE alloys increases with RE additions. A binary eutectic r...The effects of RE on the microstrcture of as-cast Mg-8Zn-4Al magnesium alloys were investigated. The results show that the solidification range of Mg-8Zn-4Al-xRE alloys increases with RE additions. A binary eutectic reaction can arise and produce a new phase (Mg:Al:Zn:RE) and the temperature of phase transformation point of the new phase is 412.85 C. In Mg-8Zn-4Al-1.5RE alloy, a small amount of Mg:Al:Zn:RE phase and ε phases are found besides a(Mg),φand r phases. Also microstructures of Mg-8Zn-4Al alloys can be refined by addition of 1.5% RE obviously.展开更多
The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and i...The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and its modification mechanism by Sb and Sr were investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). The results indicate that by adding 0.5wt.% Sb to the Mg-12Al-0.7Si alloy, the Mg17Al12 phase was refined and broken into some discontinuous island structures. However, some network Mg17Al12 phases still can be detected in Mg-12Al-0.7Si-0.09Sr alloy. Therefore, Sb performs better in modification and refinement of Mg17Al12 phase than does Sr. Small amounts of fine polygonal shaped Mg2Si phases were found in Mg-12AI-0.7Si-0.5Sb alloy, while the morphology of Mg2Si phases in Mg-12Al-0.7Si-0.09Sr alloy changed from the coarse Chinese script shapes to fine granule and irregular polygonal shapes, indicating that the effects of modification and refinement on Mg2Si phase are more significant by adding 0.09wt.% Sr than 0.5wt.% Sb. The ultimate tensile strengths of the Sb and Sr modified Mg-12Al-0.7Si alloys were considerably increased both at room temperature and at 200 ℃.展开更多
文摘The effects of RE on the microstrcture of as-cast Mg-8Zn-4Al magnesium alloys were investigated. The results show that the solidification range of Mg-8Zn-4Al-xRE alloys increases with RE additions. A binary eutectic reaction can arise and produce a new phase (Mg:Al:Zn:RE) and the temperature of phase transformation point of the new phase is 412.85 C. In Mg-8Zn-4Al-1.5RE alloy, a small amount of Mg:Al:Zn:RE phase and ε phases are found besides a(Mg),φand r phases. Also microstructures of Mg-8Zn-4Al alloys can be refined by addition of 1.5% RE obviously.
基金financially supported by the National Natural Science Foundation of China(Grant nos.:51301118,51404166)the Projects of International Cooperation in Shanxi province,China(Grant no.:2014081002)and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi province,China(Grant nos.:2013108,2014120)
文摘The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and its modification mechanism by Sb and Sr were investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). The results indicate that by adding 0.5wt.% Sb to the Mg-12Al-0.7Si alloy, the Mg17Al12 phase was refined and broken into some discontinuous island structures. However, some network Mg17Al12 phases still can be detected in Mg-12Al-0.7Si-0.09Sr alloy. Therefore, Sb performs better in modification and refinement of Mg17Al12 phase than does Sr. Small amounts of fine polygonal shaped Mg2Si phases were found in Mg-12AI-0.7Si-0.5Sb alloy, while the morphology of Mg2Si phases in Mg-12Al-0.7Si-0.09Sr alloy changed from the coarse Chinese script shapes to fine granule and irregular polygonal shapes, indicating that the effects of modification and refinement on Mg2Si phase are more significant by adding 0.09wt.% Sr than 0.5wt.% Sb. The ultimate tensile strengths of the Sb and Sr modified Mg-12Al-0.7Si alloys were considerably increased both at room temperature and at 200 ℃.