Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two al...Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two alloys were contrastively investigated. Grain size reduces remarkably and microstructure becomes homogenous when raising cooling rate. The bio-corrosion behaviour in 3.5% sodium chloride solution (3.5% NaCl) and Hank’s solution at 37°C was investigated using electrochemical polarization measurement and the results indicate that the alloy prepared at higher cooling rates has better corrosion resistance in both types of solution. Further mass loss immersion test in Hank’s solution reveals the same result. The reason of corrosion resistance improvement is that raising cooling rate brings about homogeneous microstructure, which leads to micro-galvanic corrosion alleviation. The tensile test results show that yield strength, ultimate tensile strength and elongation are improved by raising cooling rate and the improvement is mainly due to grain refinement.展开更多
The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing ...The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing temperature gradient in the plate with decreasing quenching rate,which leads to weakened inhomogeneous plastic deformation and decreased residual stress.No dynamic precipitation on the grain boundary happens after either cold water cooling or air cooling,however,air cooling leads to dynamic precipitation of Mg-Zn phase on Mn particles around which a low-density precipitate zone develops after aging treatment.Moreover,the fine and densely distributed Mg-Zn precipitates observed after aging treatment of the cold water cooled alloy are replaced by coarse precipitates with low density for the air cooled alloy.Both the low-density precipitate zone near Mn particles and the coarsening of precipitates are the source of the decrease in hardness and tensile properties of the air cooled alloy.The residual stress drops faster than the hardness with decreasing quenching rate,which makes it possible to lower the residual stress without sacrificing too much age-hardening ability of the alloy.展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
The effect of ultrasonic power and treatment time on degassing of Mg-6Zn-1Ca alloy was studied in this paper. The degassing effect was characterized by measuring densities of ingots. The results show that proper ultra...The effect of ultrasonic power and treatment time on degassing of Mg-6Zn-1Ca alloy was studied in this paper. The degassing effect was characterized by measuring densities of ingots. The results show that proper ultrasonic treatment can remove hydrogen from the melt of the Mg-6Zn-1Ca alloy. The ultrasonic degassing effect is closely related to the ultrasonic power density and treatment time. The degassing efficiency increases with an increase in ultrasonic power density when the melt is treated at 690 °C for 120 s, reaching its highest value at 1.2 W·cm-3. When the power density is 1.2 W·cm-3, with an increase in ultrasonic treatment time, the degassing efficiency increases at first, reaches its peak value at 120 s, then decreases as the ultrasonic treatment is further prolonged. In this experiment, the optimum degassing effect with an efficiency of 67.5 % is obtained by ultrasonic treatment with the power density of 1.2 W·cm-3 for 120 s. The maximum density of ingot can be increased from 1.8069 g·cm-3 to 1.8146 g·cm-3(increased by 0.43%).展开更多
基金Project(20921002)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(21221061)supported by the National Natural Science Foundation of China+1 种基金Project(201105007)supported by the Science and Technology Program of Jilin Province,ChinaProject(20140325003GX)supported by the Science and Technology Support Project of Jilin Province,China
文摘Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two alloys were contrastively investigated. Grain size reduces remarkably and microstructure becomes homogenous when raising cooling rate. The bio-corrosion behaviour in 3.5% sodium chloride solution (3.5% NaCl) and Hank’s solution at 37°C was investigated using electrochemical polarization measurement and the results indicate that the alloy prepared at higher cooling rates has better corrosion resistance in both types of solution. Further mass loss immersion test in Hank’s solution reveals the same result. The reason of corrosion resistance improvement is that raising cooling rate brings about homogeneous microstructure, which leads to micro-galvanic corrosion alleviation. The tensile test results show that yield strength, ultimate tensile strength and elongation are improved by raising cooling rate and the improvement is mainly due to grain refinement.
基金supported by the National Key Research and Development Program of China[2016YFB0301105]the National Key Research and Development Plan[2017YFB0103904]
文摘The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing temperature gradient in the plate with decreasing quenching rate,which leads to weakened inhomogeneous plastic deformation and decreased residual stress.No dynamic precipitation on the grain boundary happens after either cold water cooling or air cooling,however,air cooling leads to dynamic precipitation of Mg-Zn phase on Mn particles around which a low-density precipitate zone develops after aging treatment.Moreover,the fine and densely distributed Mg-Zn precipitates observed after aging treatment of the cold water cooled alloy are replaced by coarse precipitates with low density for the air cooled alloy.Both the low-density precipitate zone near Mn particles and the coarsening of precipitates are the source of the decrease in hardness and tensile properties of the air cooled alloy.The residual stress drops faster than the hardness with decreasing quenching rate,which makes it possible to lower the residual stress without sacrificing too much age-hardening ability of the alloy.
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.
文摘采用光学显微镜和蠕变实验机研究Mg-9Gd-4Y-1Zn-0.5Zr合金在不同温度和应力下的高温蠕变行为。结果表明:在应力为70~130 MPa范围内,200℃时Mg-9Gd-4Y-1Zn-0.5Zr合金的蠕变应力指数n=1.63,蠕变机制为晶界滑动,250℃时蠕变应力指数n=2.63,蠕变机制为位错滑移;在蠕变温度为200~250℃范围内,应力分别为70、90、110和130 MPa时,合金的蠕变激活能Qc分别为108.5、118.9、127.6和134.3 k J/mol;随着温度和应力的增加,合金晶粒长大,合金的蠕变机制由晶界滑动控制转变为位错滑移控制。
基金supported by the Major State Basic Research Development Program of China(2013CB632203)the National Key Technology R&D Program of China(2012BAF09B01)+2 种基金the Liaoning Provincial Natural Science Foundation(Grant No.201202072)the Program for Liaoning Excellent Talents in University(Grant No.LJQ2012023)the Fundamental Research Foundation of Central Universities(N120509002 and N120309003)
文摘The effect of ultrasonic power and treatment time on degassing of Mg-6Zn-1Ca alloy was studied in this paper. The degassing effect was characterized by measuring densities of ingots. The results show that proper ultrasonic treatment can remove hydrogen from the melt of the Mg-6Zn-1Ca alloy. The ultrasonic degassing effect is closely related to the ultrasonic power density and treatment time. The degassing efficiency increases with an increase in ultrasonic power density when the melt is treated at 690 °C for 120 s, reaching its highest value at 1.2 W·cm-3. When the power density is 1.2 W·cm-3, with an increase in ultrasonic treatment time, the degassing efficiency increases at first, reaches its peak value at 120 s, then decreases as the ultrasonic treatment is further prolonged. In this experiment, the optimum degassing effect with an efficiency of 67.5 % is obtained by ultrasonic treatment with the power density of 1.2 W·cm-3 for 120 s. The maximum density of ingot can be increased from 1.8069 g·cm-3 to 1.8146 g·cm-3(increased by 0.43%).