The effects of Ce addition on the microstructure of Mg-6Zn-1Mn alloy during casting, homogenization, hot extrusion, T4, T6 and T4+two-step aging were investigated. The mechanical properties of alloys with and without...The effects of Ce addition on the microstructure of Mg-6Zn-1Mn alloy during casting, homogenization, hot extrusion, T4, T6 and T4+two-step aging were investigated. The mechanical properties of alloys with and without Ce were compared. The results showed that Ce had an obvious effect on the microstructure of ZM61-0.5Ce alloy by restricting the occurrence of dynamic recrystallization and restraining the grain growth during extrusion and heat treatment subsequently. A new binary phase Mg 12 Ce was identified in ZM61-0.5Ce alloy, which distributed at grain boundaries and was broken to small particles distributed at grain boundaries along extrusion direction during extrusion. The mechanical properties of as-extruded ZM61-0.5Ce alloy were improved with the addition of Ce. The improved tensile properties of as-extruded ZM61-0.5Ce alloy were due to the finer grain sizes as compared to ZM61 alloy. However, the UTS and YS decreased severely and the elongation increased when ZM61-0.5Ce was treated by T6 and T4+two-step aging. Brittle Mg 12 Ce phase, which was distributed at the grain boundary areas and cannot dissolve into the Mg matrix after solution treatment, became crack source under tensile stress.展开更多
The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron micr...The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron microscopy(SEM), electron back scattered diffraction(EBSD), transmission electron microscopy(TEM), hardness tests and uniaxial tensile tests. The results showed that the as-cast alloy consisted of α(Mg), Mn, Mg7Zn3, Mg2 Sn and Mg Sn Nd phases. Dynamic recrystallization has completed during the extrusion process and the average grain size was 7.2 μm. After T5 treatment, the strength increased obviously, the yield strength and ultimate tensile strength of as-extruded alloy were increased by 94 and 34 MPa, respectively. Microstructure characterization revealed that the improvement of strength was determined by the high number density of β′1 rods.展开更多
The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing ...The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing temperature gradient in the plate with decreasing quenching rate,which leads to weakened inhomogeneous plastic deformation and decreased residual stress.No dynamic precipitation on the grain boundary happens after either cold water cooling or air cooling,however,air cooling leads to dynamic precipitation of Mg-Zn phase on Mn particles around which a low-density precipitate zone develops after aging treatment.Moreover,the fine and densely distributed Mg-Zn precipitates observed after aging treatment of the cold water cooled alloy are replaced by coarse precipitates with low density for the air cooled alloy.Both the low-density precipitate zone near Mn particles and the coarsening of precipitates are the source of the decrease in hardness and tensile properties of the air cooled alloy.The residual stress drops faster than the hardness with decreasing quenching rate,which makes it possible to lower the residual stress without sacrificing too much age-hardening ability of the alloy.展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
Rapidly solidified(RS) Mg-6Zn-1Y-1Ce ribbons were prepared by single roller melt-spinning technique.Transmission electron microscopy and energy dispersive X-ray spectroscopy were employed to characterize the microst...Rapidly solidified(RS) Mg-6Zn-1Y-1Ce ribbons were prepared by single roller melt-spinning technique.Transmission electron microscopy and energy dispersive X-ray spectroscopy were employed to characterize the microstructure of RS ribbons.The results show that there is high density of particles distributed within grains and at grain boundaries in the region near wheel side.The particle density is decreased in the middle region and free surface region.The alloy is predominantly composed of supersaturated--Mg solid solution,T phase and W phase;meanwhile,a few icosahedral quasicrystalline and Mg4Zn7 particles are also observed.The T phase is confirmed having a body-centered orthorhombic structure that is transformed from the body-centered tetragonal structure Mg12Ce phase due to the partial substitution of Mg atoms by Zn.展开更多
The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristi...The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristics investigated using scanning electron microscopy(SEM)and energy dispersive X-ray spectrometer(EDS)showed that the MAO coatings displayed uneven crater-like holes and tiny cracks under lower voltage,while they exhibited relatively homogeneous crater-like holes without cracks under higher voltage.The thickness of MAO coatings increased with increasing voltage.The corrosion behavior of Mg-4Zn-1Mn alloy was improved by the MAO coatings.The MAO coatings prepared under 450 V and 500 V voltages possessed the best corrosion resistance with regard to the electrochemical corrosion tests and immersion corrosion tests,respectively.The MAO coatings fabricated under 450-500 V could provide a better corrosion protection effect for the substrate.展开更多
基金Project(2007CB613700)supported by the National Basic Research Program of ChinaProject(2007BAG06B04)supported by the National Key Technology R&D Program+2 种基金Project(CSTC,2009AB4008)supported by the Chongqing Sci&Tech ProgramProject(50725413)supported by the National Natural Science Foundation of ChinaProject(CDJXS10132202)supported by the Fundamental Research Funds for the Central Universities, China
文摘The effects of Ce addition on the microstructure of Mg-6Zn-1Mn alloy during casting, homogenization, hot extrusion, T4, T6 and T4+two-step aging were investigated. The mechanical properties of alloys with and without Ce were compared. The results showed that Ce had an obvious effect on the microstructure of ZM61-0.5Ce alloy by restricting the occurrence of dynamic recrystallization and restraining the grain growth during extrusion and heat treatment subsequently. A new binary phase Mg 12 Ce was identified in ZM61-0.5Ce alloy, which distributed at grain boundaries and was broken to small particles distributed at grain boundaries along extrusion direction during extrusion. The mechanical properties of as-extruded ZM61-0.5Ce alloy were improved with the addition of Ce. The improved tensile properties of as-extruded ZM61-0.5Ce alloy were due to the finer grain sizes as compared to ZM61 alloy. However, the UTS and YS decreased severely and the elongation increased when ZM61-0.5Ce was treated by T6 and T4+two-step aging. Brittle Mg 12 Ce phase, which was distributed at the grain boundary areas and cannot dissolve into the Mg matrix after solution treatment, became crack source under tensile stress.
基金Project(2013CB632200)supported by the National Great Theoretic Research,ChinaProject(2011BAE22B01-3)supported by the National Sci&Tech Support Program,ChinaProject(2010DFR50010)supported by the International Cooperation,Sharing Fund of Chongqing University’s Large-scale Equipment,China
文摘The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron microscopy(SEM), electron back scattered diffraction(EBSD), transmission electron microscopy(TEM), hardness tests and uniaxial tensile tests. The results showed that the as-cast alloy consisted of α(Mg), Mn, Mg7Zn3, Mg2 Sn and Mg Sn Nd phases. Dynamic recrystallization has completed during the extrusion process and the average grain size was 7.2 μm. After T5 treatment, the strength increased obviously, the yield strength and ultimate tensile strength of as-extruded alloy were increased by 94 and 34 MPa, respectively. Microstructure characterization revealed that the improvement of strength was determined by the high number density of β′1 rods.
基金supported by the National Key Research and Development Program of China[2016YFB0301105]the National Key Research and Development Plan[2017YFB0103904]
文摘The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing temperature gradient in the plate with decreasing quenching rate,which leads to weakened inhomogeneous plastic deformation and decreased residual stress.No dynamic precipitation on the grain boundary happens after either cold water cooling or air cooling,however,air cooling leads to dynamic precipitation of Mg-Zn phase on Mn particles around which a low-density precipitate zone develops after aging treatment.Moreover,the fine and densely distributed Mg-Zn precipitates observed after aging treatment of the cold water cooled alloy are replaced by coarse precipitates with low density for the air cooled alloy.Both the low-density precipitate zone near Mn particles and the coarsening of precipitates are the source of the decrease in hardness and tensile properties of the air cooled alloy.The residual stress drops faster than the hardness with decreasing quenching rate,which makes it possible to lower the residual stress without sacrificing too much age-hardening ability of the alloy.
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.
基金Project (50271054) supported by the National Natural Science Foundation of ChinaProject (20070700003) supported by the Doctorate Programs Foundation of Ministry of Education of China+1 种基金Project (102102210031) supported by the Science and Technologies Foundation of Henan Province,ChinaProject (2010A430008) supported by the Natural Science Foundation of Henan Educational Committee of China
文摘Rapidly solidified(RS) Mg-6Zn-1Y-1Ce ribbons were prepared by single roller melt-spinning technique.Transmission electron microscopy and energy dispersive X-ray spectroscopy were employed to characterize the microstructure of RS ribbons.The results show that there is high density of particles distributed within grains and at grain boundaries in the region near wheel side.The particle density is decreased in the middle region and free surface region.The alloy is predominantly composed of supersaturated--Mg solid solution,T phase and W phase;meanwhile,a few icosahedral quasicrystalline and Mg4Zn7 particles are also observed.The T phase is confirmed having a body-centered orthorhombic structure that is transformed from the body-centered tetragonal structure Mg12Ce phase due to the partial substitution of Mg atoms by Zn.
文摘The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristics investigated using scanning electron microscopy(SEM)and energy dispersive X-ray spectrometer(EDS)showed that the MAO coatings displayed uneven crater-like holes and tiny cracks under lower voltage,while they exhibited relatively homogeneous crater-like holes without cracks under higher voltage.The thickness of MAO coatings increased with increasing voltage.The corrosion behavior of Mg-4Zn-1Mn alloy was improved by the MAO coatings.The MAO coatings prepared under 450 V and 500 V voltages possessed the best corrosion resistance with regard to the electrochemical corrosion tests and immersion corrosion tests,respectively.The MAO coatings fabricated under 450-500 V could provide a better corrosion protection effect for the substrate.