The microstructure and corrosion behavior of the as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys(x=4,8,12,wt.%)were studied.The results show that as the Li content increases from 4%to 12%,the matrix transfer...The microstructure and corrosion behavior of the as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys(x=4,8,12,wt.%)were studied.The results show that as the Li content increases from 4%to 12%,the matrix transfers from singleα-Mg phase,(α-Mg+β-Li)dual phase to singleβ-Li phase.A mixed corrosion feature of intergranular corrosion and pitting corrosion occurs in the Mg-4Li-3Al-2Zn-0.5Y and Mg-12Li-3Al-2Zn-0.5Y alloys.The former is related to the precipitated AlLi phase along the grain boundaries,and the latter is related to the high potential difference between the second phase and the matrix.The corrosion resistance of the as-extruded alloys is better than that of the as-homogenized alloys.The superior corrosion resistance of the as-extruded Mg-8Li-3Al-2Zn-0.5Y alloy with the lowest corrosion rate(P_(W)=(0.63±0.26)mm/a)is attributed to the more uniform distribution of second phases,the protectiveα-Mg phase via sacrificing theβ-Li phase and the relatively integrated oxide film.展开更多
Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on ...Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.展开更多
The effects of the ultrasonic treatment on the microstructure and mechanical properties of Mg-6Zn-0.5Y-2Sn alloy were investigated. The results show that the ultrasonic treatment has significant effect on the microstr...The effects of the ultrasonic treatment on the microstructure and mechanical properties of Mg-6Zn-0.5Y-2Sn alloy were investigated. The results show that the ultrasonic treatment has significant effect on the microstructure and mechanical properties of Mg-6Zn-0.5Y-2Sn alloy. The phases in Mg-6Zn-0.5Y-2Sn alloy are α-Mg, MgZn2, MgSnY, Mg2Sn, and a small amount of I-phase. With the application of ultrasonic treatment, I-phase nearly disappears, and with increasing the ultrasonic treatment power, the coarse dendrites gradually change into roundish equiaxed grains. The second phases at the α-Mg boundaries transform from coarse, semicontinuous and non-uniform to fine, discontinuous, uniform and dispersive. When the ultrasonic treatment power is 700 W, the best comprehensive mechanical properties of Mg-6Zn-0.5Y-2Sn alloy are obtained. Compared with the untreated alloy, the 0.2%tensile yield strength, ultimate tensile strength and elongation are improved by 28%, 30%and 67%, respectively.展开更多
In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed i...In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed in the temperature range of 498-648 K and the strain rate range of 0.01-5 s~(-1) on a Gleeble 3800 thermo-mechanical simulator. Based on the regression analysis by Arrhenius type equation and Avrami type equation of flow behavior, the activation energy of deformation of ZAT422 alloy was determined as 155.652 k J/mol, and the constitutive equations for flow behavior and the dynamic recrystallization(DRX) kinetic model of ZAT422 alloy were established. Microstructure observation shows that when the temperature is as low as 498 K, the DRX is not completed as the true strain reaches 0.9163. However, with the temperature increasing to 648 K, the lower strain rate is more likely to result in some grains' abnormal growth.展开更多
The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble...The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble 1500D thermomechanical simulator.Results show that the deformation temperature and strain rate signi cantly affected ow stress and material constants.In addition,the strain-compensated constitutive relationship was established on the basis of true stress strain curves.The main deformation mechanism for this alloy was the dynamic recrystallization(DRX),and the DRX degree was effectively enhanced with an increase in deformation temperature and a decrease in strain rate.Moreover,the cellular automaton method was used to simulate the microstructure evolution during hot compression.In addition,the processing maps were established,and the optimum deformation parameters for the as-solutionized TZC820 alloy are at 370400℃and 0.01 s 1,and at 320360℃and 13 s 1.展开更多
In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick pl...In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.展开更多
Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined ...Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.展开更多
In this work,a new(Y,Gd)H_(2) precipitate was identified and systematically investigated in the as-cast Mg-6Gd-3Y-0.5Zr alloy by XRD,SEM with EDS,TEM with EDS techniques and thermodynamics analysis.Results show that t...In this work,a new(Y,Gd)H_(2) precipitate was identified and systematically investigated in the as-cast Mg-6Gd-3Y-0.5Zr alloy by XRD,SEM with EDS,TEM with EDS techniques and thermodynamics analysis.Results show that the as-cast alloy contains α-Mg,Mg_(24)(Gd,Y)_(5),and(Y,Gd)H_(2) phase.The(Y,Gd)H_(2) phase usually forms near the eutectic phase Mg_(24)(Gd,Y)_(5) or in the α-Mg grains,displaying a rectangle-shape.The Mg_(24)(Gd,Y)_(5) and(Y,Gd)H_(2) phases crystalize in bcc and fcc structure,respectively,and the(Y,Gd)H_(2) phase has a semi-coherent relationship with α-Mg matrix.The thermodynamics calculation results reveal that the hydrogen dissolved in the melt leads to the formation of hydrides.It is also found that the(Y,Gd)H_(2) hydride can form directly from the liquid phase during solidification.Additionally,it can precipitate by the decomposition of Mg_(24)(Gd,Y)_(5) phase due to absorbing hydrogen from the remaining melt.展开更多
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer...A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.展开更多
The influences of two kinds of casting modules of metal casting (MC) and expandable pattern casting (EPC) on the corrosion behavior of Mg-11Gd-3Y alloy were studied by electrochemical measurements, scanning electr...The influences of two kinds of casting modules of metal casting (MC) and expandable pattern casting (EPC) on the corrosion behavior of Mg-11Gd-3Y alloy were studied by electrochemical measurements, scanning electron microscopy (SEM) observation, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. It is found that the quantity of the Mg 24 (Gd, Y) 5 phase in MC is more than that in EPC due to the cooling rate. There is more alloying element dissolved in the matrix compared with MC. For EPC, the galvanic corrosion effect between the matrix and the Mg 24 (Gd, Y) 5 phase decreases and the corrosion resistance increases compared with the MC. The chief corrosion mode for Mg-11Gd-3Y alloy is pitting corrosion because most of the alloying elements are transformed into intermetallic phases. The average corrosion rate of the MC alloy in the immersion test is five times higher than that of EPC alloy and yttrium is present in the product film, which will provide increased protection for Mg-11Gd-3Y alloy. The electrochemical measurements and immersion test show that the EPC process increases the corrosion resistance compared with the MC Mg-11Gd-3Y alloy.展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51771115,51775334,51821001,U2037601)Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment(No.SKL2020005)。
文摘The microstructure and corrosion behavior of the as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys(x=4,8,12,wt.%)were studied.The results show that as the Li content increases from 4%to 12%,the matrix transfers from singleα-Mg phase,(α-Mg+β-Li)dual phase to singleβ-Li phase.A mixed corrosion feature of intergranular corrosion and pitting corrosion occurs in the Mg-4Li-3Al-2Zn-0.5Y and Mg-12Li-3Al-2Zn-0.5Y alloys.The former is related to the precipitated AlLi phase along the grain boundaries,and the latter is related to the high potential difference between the second phase and the matrix.The corrosion resistance of the as-extruded alloys is better than that of the as-homogenized alloys.The superior corrosion resistance of the as-extruded Mg-8Li-3Al-2Zn-0.5Y alloy with the lowest corrosion rate(P_(W)=(0.63±0.26)mm/a)is attributed to the more uniform distribution of second phases,the protectiveα-Mg phase via sacrificing theβ-Li phase and the relatively integrated oxide film.
基金financially supported by the Natural Science Foundation of Shanxi Province (No. 201901D111176)the Joint Funds of the National Natural Science Foundation of china (Grant No. U20A20230)+3 种基金the Bureau of science, technology and industry for National Defense of China (No. WDZC2019JJ006)the Key R&D program of Shanxi Province (International Cooperation) (No. 201903D421036)the National Natural Science Foundation of China (Grant No. 52075501)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2018002)。
文摘Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.
基金Project(cstc2015jcyj BX0036)supported by Chongqing Research Program of Basic Research and Frontier Technology,ChinaProject(51571040)supported by the National Natural Science Foundation of ChinaProject supported by the Sharing Fund of Chongqing University’s Large-scale Equipment,China
文摘The effects of the ultrasonic treatment on the microstructure and mechanical properties of Mg-6Zn-0.5Y-2Sn alloy were investigated. The results show that the ultrasonic treatment has significant effect on the microstructure and mechanical properties of Mg-6Zn-0.5Y-2Sn alloy. The phases in Mg-6Zn-0.5Y-2Sn alloy are α-Mg, MgZn2, MgSnY, Mg2Sn, and a small amount of I-phase. With the application of ultrasonic treatment, I-phase nearly disappears, and with increasing the ultrasonic treatment power, the coarse dendrites gradually change into roundish equiaxed grains. The second phases at the α-Mg boundaries transform from coarse, semicontinuous and non-uniform to fine, discontinuous, uniform and dispersive. When the ultrasonic treatment power is 700 W, the best comprehensive mechanical properties of Mg-6Zn-0.5Y-2Sn alloy are obtained. Compared with the untreated alloy, the 0.2%tensile yield strength, ultimate tensile strength and elongation are improved by 28%, 30%and 67%, respectively.
基金Project(2016YFB0301105)supported by the National Key Research and Development Plan,ChinaProject(ZR2015YL007)supported by the Natural Science Foundation of Shandong Province,ChinaProject(ZR2015EQ019)supported by the Natural Science Foundation of Shandong Province,China
文摘In order to have a better understanding of the hot deformation behavior of the as-solution-treated Mg-4 Zn-2 Sn-2 Al(ZAT422) alloy, a series of compression experiments with a height reduction of 60% were performed in the temperature range of 498-648 K and the strain rate range of 0.01-5 s~(-1) on a Gleeble 3800 thermo-mechanical simulator. Based on the regression analysis by Arrhenius type equation and Avrami type equation of flow behavior, the activation energy of deformation of ZAT422 alloy was determined as 155.652 k J/mol, and the constitutive equations for flow behavior and the dynamic recrystallization(DRX) kinetic model of ZAT422 alloy were established. Microstructure observation shows that when the temperature is as low as 498 K, the DRX is not completed as the true strain reaches 0.9163. However, with the temperature increasing to 648 K, the lower strain rate is more likely to result in some grains' abnormal growth.
基金Project(2019YJ0478) supported by Sichuan Science and Technology Program,ChinaProjects(2017RCL18,2017RCL35) supported by the Research Foundation for the Introduction of Talent of Sichuan University of Science and Engineering,ChinaProjects(2017CL06,2018CL06) supported by the Opening Program of Material Corrosion and Protection Key Laboratory of Sichuan Province,China
文摘The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble 1500D thermomechanical simulator.Results show that the deformation temperature and strain rate signi cantly affected ow stress and material constants.In addition,the strain-compensated constitutive relationship was established on the basis of true stress strain curves.The main deformation mechanism for this alloy was the dynamic recrystallization(DRX),and the DRX degree was effectively enhanced with an increase in deformation temperature and a decrease in strain rate.Moreover,the cellular automaton method was used to simulate the microstructure evolution during hot compression.In addition,the processing maps were established,and the optimum deformation parameters for the as-solutionized TZC820 alloy are at 370400℃and 0.01 s 1,and at 320360℃and 13 s 1.
基金Project(51801082) supported by National Natural Science Foundation of ChinaProjects(GY2021003, GY2021020)supported by the Key Research and Development Program of Zhenjiang City,China+1 种基金Project(KYCX21_3453) supported by Graduate Research and Innovation Projects in Jiangsu Province,ChinaProject(202110289002Z) supported by Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province,China。
文摘In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.
基金supported by the National Natural Science Foundation of China (Nos. 51674166, U1902220)the National Key R&D Program of China (No. 2021YFB3701303)。
文摘Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.
基金financially supported by the Key Project of Equipment Pre-research Field Fund under Grant No.61409230407the National Natural Science Foundation of China(NSFC)under Grant No.51601054the Central Government Guides Local Science and Technology Development Fund Projects under Grant No.206Z1005G。
文摘In this work,a new(Y,Gd)H_(2) precipitate was identified and systematically investigated in the as-cast Mg-6Gd-3Y-0.5Zr alloy by XRD,SEM with EDS,TEM with EDS techniques and thermodynamics analysis.Results show that the as-cast alloy contains α-Mg,Mg_(24)(Gd,Y)_(5),and(Y,Gd)H_(2) phase.The(Y,Gd)H_(2) phase usually forms near the eutectic phase Mg_(24)(Gd,Y)_(5) or in the α-Mg grains,displaying a rectangle-shape.The Mg_(24)(Gd,Y)_(5) and(Y,Gd)H_(2) phases crystalize in bcc and fcc structure,respectively,and the(Y,Gd)H_(2) phase has a semi-coherent relationship with α-Mg matrix.The thermodynamics calculation results reveal that the hydrogen dissolved in the melt leads to the formation of hydrides.It is also found that the(Y,Gd)H_(2) hydride can form directly from the liquid phase during solidification.Additionally,it can precipitate by the decomposition of Mg_(24)(Gd,Y)_(5) phase due to absorbing hydrogen from the remaining melt.
基金Projects (51101096, 51002093) supported by the National Natural Science Foundation of ChinaProject (1052nm05000) supported by Special Foundation of the Shanghai Science and Technology Commission for Nano-Materials ResearchProject (J51042) supported by Leading Academic Discipline Project of the Shanghai Education Commission, China
文摘A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.
基金Project(2007CB613705)supported by the National Basic Research Program of China
文摘The influences of two kinds of casting modules of metal casting (MC) and expandable pattern casting (EPC) on the corrosion behavior of Mg-11Gd-3Y alloy were studied by electrochemical measurements, scanning electron microscopy (SEM) observation, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. It is found that the quantity of the Mg 24 (Gd, Y) 5 phase in MC is more than that in EPC due to the cooling rate. There is more alloying element dissolved in the matrix compared with MC. For EPC, the galvanic corrosion effect between the matrix and the Mg 24 (Gd, Y) 5 phase decreases and the corrosion resistance increases compared with the MC. The chief corrosion mode for Mg-11Gd-3Y alloy is pitting corrosion because most of the alloying elements are transformed into intermetallic phases. The average corrosion rate of the MC alloy in the immersion test is five times higher than that of EPC alloy and yttrium is present in the product film, which will provide increased protection for Mg-11Gd-3Y alloy. The electrochemical measurements and immersion test show that the EPC process increases the corrosion resistance compared with the MC Mg-11Gd-3Y alloy.
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.