Pouring and mold temperatures are two important parameters during casting magnesium components. The present study examined their influence on hot tearing susceptibility (HTS) of commercial AZ91D and newly developed ...Pouring and mold temperatures are two important parameters during casting magnesium components. The present study examined their influence on hot tearing susceptibility (HTS) of commercial AZ91D and newly developed Mg-3Nd-0.2Zn-Zr (mass fraction, %; NZ30K) magnesium alloys in gravity permanent mold casting condition. The results indicate that mold temperature shows much more significant influence on the HTS of both alloys than pouring temperature whose influence only can be distinguished at low mold temperature (341 K for AZ91D alloy and 423 K for NZ30K alloy). Hot tearing susceptibility prediction model concerning feeding parameters, grain size and solidification range, is more suitable to estimate the HTS of different magnesium alloys than the model only concerning feeding parameters. In order to achieve better hot tearing resistance, the ranges of pouring and mold temperatures are suggested to be 961-991 K and≥641 K for AZ91D alloy, 1003-1033 K and≥623 K for NZ30K alloy, respectively.展开更多
The effects of addition of minor amount of(0.5 wt.%) antimony(Sb) or gadolinium(Gd) and combined addition of Sb and Gd(0.5 wt.%,respectively) on the hot tearing susceptibility(HTS) of Mg-5Al-3Ca alloy were investigate...The effects of addition of minor amount of(0.5 wt.%) antimony(Sb) or gadolinium(Gd) and combined addition of Sb and Gd(0.5 wt.%,respectively) on the hot tearing susceptibility(HTS) of Mg-5Al-3Ca alloy were investigated experimentally using a “T-shaped” hot tearing measuring system. Various solidification parameters of the alloys were measured and calculated through thermal analysis experiments. The microstructure, grain size, and morphology of the crack zone were characterized by scanning electron microscopy and electron backscatter diffraction, and the crystal phases of the alloys were analyzed by X-ray diffraction and energy-dispersive X-ray spectroscopy. The results showed that the addition of 0.5 wt.% Gd resulted in the increase in the vulnerable temperature range(Tv) and reduced the eutectic structure content that could participate in feeding, thereby improving the HTS of the alloy. However, addition of 0.5 wt.% Sb or combined addition of Gd and Sb(0.5 wt.%, respectively) to the Mg-5Al-3Ca alloy shortened the Tvand improved the skeleton strength of the alloy, thereby reducing HTS. Moreover, significantly refined structure of Mg-5Al-3Ca-0.5Gd-0.5Sb alloy improved the feeding ability of the eutectic structure, thus the alloy exhibited the lowest HTS.展开更多
Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and th...Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and the distribution of Ce was analyzed by optical microscopy (OM), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that Ce element exists in the form of Mg12Ce phase and has an obvious refining effect on the microstructure of test alloys. As the Ce content increases, the grain size reduces, the grain boundaries turn thinner, and the distribution of Mg12Ce precipitates becomes more and more dispersed. The Mg-1.5Zn-0.2Zr alloy with 0.3%Ce has the best refinement effect. From center to periphery of the ingot, the amount of granular precipitates in the grain reduces. In longitudinal section of the ingot, some relative long columnar grains appear.展开更多
Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on ...Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.展开更多
Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined ...Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two al...Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two alloys were contrastively investigated. Grain size reduces remarkably and microstructure becomes homogenous when raising cooling rate. The bio-corrosion behaviour in 3.5% sodium chloride solution (3.5% NaCl) and Hank’s solution at 37°C was investigated using electrochemical polarization measurement and the results indicate that the alloy prepared at higher cooling rates has better corrosion resistance in both types of solution. Further mass loss immersion test in Hank’s solution reveals the same result. The reason of corrosion resistance improvement is that raising cooling rate brings about homogeneous microstructure, which leads to micro-galvanic corrosion alleviation. The tensile test results show that yield strength, ultimate tensile strength and elongation are improved by raising cooling rate and the improvement is mainly due to grain refinement.展开更多
The effect of ultrasonic power and treatment time on degassing of Mg-6Zn-1Ca alloy was studied in this paper. The degassing effect was characterized by measuring densities of ingots. The results show that proper ultra...The effect of ultrasonic power and treatment time on degassing of Mg-6Zn-1Ca alloy was studied in this paper. The degassing effect was characterized by measuring densities of ingots. The results show that proper ultrasonic treatment can remove hydrogen from the melt of the Mg-6Zn-1Ca alloy. The ultrasonic degassing effect is closely related to the ultrasonic power density and treatment time. The degassing efficiency increases with an increase in ultrasonic power density when the melt is treated at 690 °C for 120 s, reaching its highest value at 1.2 W·cm-3. When the power density is 1.2 W·cm-3, with an increase in ultrasonic treatment time, the degassing efficiency increases at first, reaches its peak value at 120 s, then decreases as the ultrasonic treatment is further prolonged. In this experiment, the optimum degassing effect with an efficiency of 67.5 % is obtained by ultrasonic treatment with the power density of 1.2 W·cm-3 for 120 s. The maximum density of ingot can be increased from 1.8069 g·cm-3 to 1.8146 g·cm-3(increased by 0.43%).展开更多
The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to t...The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.展开更多
Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties.The microstructure,phase components and chemical compositions of the laser-clad layer were analyz...Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties.The microstructure,phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS).The results show that the clad layer mainly consists ofα-Mg,Mg2Si dendrites,Mg17Al12and Al3Mg2phases.Owing to the formation of Mg2Si,Mg17Al12and Al3Mg2intermetallic compounds in the melted region and grain refinement,the microhardness of the clad layer(HV0.025310)is about5times higher than that of the substrate(HV0.02554).Besides,corrosion tests in the NaCl(3.5%,mass fraction)water solution show that the corrosion potential is increased from-1574.6mV for the untreated sample to-128.7mV for the laser-clad sample,while the corrosion current density is reduced from170.1to6.7μA/cm2.These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.展开更多
A Mg-6Zn-3Gd(mass fraction,%) alloy,noted as ZG63,was coated by different micro-arc oxidation(MAO) processes,and the coating structure and corrosion resistance of the alloy were studied using scanning electron microsc...A Mg-6Zn-3Gd(mass fraction,%) alloy,noted as ZG63,was coated by different micro-arc oxidation(MAO) processes,and the coating structure and corrosion resistance of the alloy were studied using scanning electron microscopy(SEM),glancing angle X-ray diffractometry(GAXRD) and various electrochemical methods.The micro-arc oxidation process consists of three stages and corresponds with different coating structures.In the initial stage,the coating thickness is linearly increased and is controlled by electrochemical polarization.In the second stage,the coating grows mainly inward and accords with parabolic regularity.In the third stage,the loose coating forms and is controlled by local arc light.The looser coating is mainly composed of MgSiO3 and the compact coating is mainly composed of MgO.From micro-arc oxidation stage to local arc light stage,the corrosion resistance of the coated alloy firstly increases and then decreases.The satisfied corrosion resistance corresponds to the coating time ranging from 6 to10 min.展开更多
The microstructure and corrosion resistance of Mg-0.5 Zn-0.2 Ca-0.2 Ce alloy with different processing conditions were investigated.The composition was detected by X-ray fluorescence(XRF),and the microstructure was an...The microstructure and corrosion resistance of Mg-0.5 Zn-0.2 Ca-0.2 Ce alloy with different processing conditions were investigated.The composition was detected by X-ray fluorescence(XRF),and the microstructure was analyzed by optical microscopy(OM)and scanning electron microscope(SEM)equipped with energy-dispersive spectroscopy(EDS).The corrosion behavior was investigated by hydrogen evolution tests,weight loss tests and electrochemical measurements.The Mg-0.5 Zn-0.2 Ca-0.2 Ce alloy has much better corrosion resistance compared with the commercial AZ31 sheet,which can be attributed to its dispersive second phases and protective corrosion products film on the alloy surface.Moreover,the as-rolled Mg-0.5 Zn-0.2 Ca-0.2 Ce alloy shows much better corrosion resistance compared with the as-extruded Mg-0.5 Zn-0.2 Ca-0.2 Ce alloy.This can be due to three aspects:The as-rolled alloy has smaller grain size;the as-rolled alloy has lower(1010)/(1120)texture intensity;the residual stress of the as-rolled alloy is eliminated during the annealing process,but large residual stress exists in the asextruded alloy produced by the extrusion process.展开更多
基金Project (2009AA033501) supported by the High-tech Research and Development Program of China
文摘Pouring and mold temperatures are two important parameters during casting magnesium components. The present study examined their influence on hot tearing susceptibility (HTS) of commercial AZ91D and newly developed Mg-3Nd-0.2Zn-Zr (mass fraction, %; NZ30K) magnesium alloys in gravity permanent mold casting condition. The results indicate that mold temperature shows much more significant influence on the HTS of both alloys than pouring temperature whose influence only can be distinguished at low mold temperature (341 K for AZ91D alloy and 423 K for NZ30K alloy). Hot tearing susceptibility prediction model concerning feeding parameters, grain size and solidification range, is more suitable to estimate the HTS of different magnesium alloys than the model only concerning feeding parameters. In order to achieve better hot tearing resistance, the ranges of pouring and mold temperatures are suggested to be 961-991 K and≥641 K for AZ91D alloy, 1003-1033 K and≥623 K for NZ30K alloy, respectively.
基金financial support from Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (2019JH3/30100014)Liaoning Bai Qian Wan Talents Program. Liaoning Revitalization Talents Program (Nos. XLYC1807021 and 1907007)+2 种基金High Level Innovation Team of Liaoning Province(XLYC1908006)Project of Liaoning Education Department(Nos. LQGD2019002, and LJGD2020008)Liaoning Nature Fund Guidance Plan (No. 2019-ZD-0210)。
文摘The effects of addition of minor amount of(0.5 wt.%) antimony(Sb) or gadolinium(Gd) and combined addition of Sb and Gd(0.5 wt.%,respectively) on the hot tearing susceptibility(HTS) of Mg-5Al-3Ca alloy were investigated experimentally using a “T-shaped” hot tearing measuring system. Various solidification parameters of the alloys were measured and calculated through thermal analysis experiments. The microstructure, grain size, and morphology of the crack zone were characterized by scanning electron microscopy and electron backscatter diffraction, and the crystal phases of the alloys were analyzed by X-ray diffraction and energy-dispersive X-ray spectroscopy. The results showed that the addition of 0.5 wt.% Gd resulted in the increase in the vulnerable temperature range(Tv) and reduced the eutectic structure content that could participate in feeding, thereby improving the HTS of the alloy. However, addition of 0.5 wt.% Sb or combined addition of Gd and Sb(0.5 wt.%, respectively) to the Mg-5Al-3Ca alloy shortened the Tvand improved the skeleton strength of the alloy, thereby reducing HTS. Moreover, significantly refined structure of Mg-5Al-3Ca-0.5Gd-0.5Sb alloy improved the feeding ability of the eutectic structure, thus the alloy exhibited the lowest HTS.
基金Project(2007CB613702) supported by the National Basic Research Program of ChinaProject(CSTD2006AA4012) supported by the Key Technologies R&D Program of the Chongqing Science and Technology Commission
文摘Mg-1.5Zn-0.2Zr-xCe (x=0, 0.1, 0.3, 0.5, mass fraction, %) alloys were prepared by conventional semi-continuous casting. The effect of rare earth Ce on the microstructure of Mg-1.5Zn-0.2Zr-xCe alloys was studied and the distribution of Ce was analyzed by optical microscopy (OM), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicate that Ce element exists in the form of Mg12Ce phase and has an obvious refining effect on the microstructure of test alloys. As the Ce content increases, the grain size reduces, the grain boundaries turn thinner, and the distribution of Mg12Ce precipitates becomes more and more dispersed. The Mg-1.5Zn-0.2Zr alloy with 0.3%Ce has the best refinement effect. From center to periphery of the ingot, the amount of granular precipitates in the grain reduces. In longitudinal section of the ingot, some relative long columnar grains appear.
基金financially supported by the Natural Science Foundation of Shanxi Province (No. 201901D111176)the Joint Funds of the National Natural Science Foundation of china (Grant No. U20A20230)+3 种基金the Bureau of science, technology and industry for National Defense of China (No. WDZC2019JJ006)the Key R&D program of Shanxi Province (International Cooperation) (No. 201903D421036)the National Natural Science Foundation of China (Grant No. 52075501)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2018002)。
文摘Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.
基金supported by the National Natural Science Foundation of China (Nos. 51674166, U1902220)the National Key R&D Program of China (No. 2021YFB3701303)。
文摘Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.
基金Project(20921002)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(21221061)supported by the National Natural Science Foundation of China+1 种基金Project(201105007)supported by the Science and Technology Program of Jilin Province,ChinaProject(20140325003GX)supported by the Science and Technology Support Project of Jilin Province,China
文摘Mg?1Zn?0.5Ca alloys were prepared by traditional steel mould casting and water-cooled copper mould injection casting at higher cooling rate. Microstructure, mechanical properties and bio-corrosion resistance of two alloys were contrastively investigated. Grain size reduces remarkably and microstructure becomes homogenous when raising cooling rate. The bio-corrosion behaviour in 3.5% sodium chloride solution (3.5% NaCl) and Hank’s solution at 37°C was investigated using electrochemical polarization measurement and the results indicate that the alloy prepared at higher cooling rates has better corrosion resistance in both types of solution. Further mass loss immersion test in Hank’s solution reveals the same result. The reason of corrosion resistance improvement is that raising cooling rate brings about homogeneous microstructure, which leads to micro-galvanic corrosion alleviation. The tensile test results show that yield strength, ultimate tensile strength and elongation are improved by raising cooling rate and the improvement is mainly due to grain refinement.
基金supported by the Major State Basic Research Development Program of China(2013CB632203)the National Key Technology R&D Program of China(2012BAF09B01)+2 种基金the Liaoning Provincial Natural Science Foundation(Grant No.201202072)the Program for Liaoning Excellent Talents in University(Grant No.LJQ2012023)the Fundamental Research Foundation of Central Universities(N120509002 and N120309003)
文摘The effect of ultrasonic power and treatment time on degassing of Mg-6Zn-1Ca alloy was studied in this paper. The degassing effect was characterized by measuring densities of ingots. The results show that proper ultrasonic treatment can remove hydrogen from the melt of the Mg-6Zn-1Ca alloy. The ultrasonic degassing effect is closely related to the ultrasonic power density and treatment time. The degassing efficiency increases with an increase in ultrasonic power density when the melt is treated at 690 °C for 120 s, reaching its highest value at 1.2 W·cm-3. When the power density is 1.2 W·cm-3, with an increase in ultrasonic treatment time, the degassing efficiency increases at first, reaches its peak value at 120 s, then decreases as the ultrasonic treatment is further prolonged. In this experiment, the optimum degassing effect with an efficiency of 67.5 % is obtained by ultrasonic treatment with the power density of 1.2 W·cm-3 for 120 s. The maximum density of ingot can be increased from 1.8069 g·cm-3 to 1.8146 g·cm-3(increased by 0.43%).
基金Project(50725413) supported by the National Natural Science Foundation of ChinaProject (2007CB613704) supported by the National Basic Research Program of China Projects(2006AA4012-9-6,2007BB4400) supported by Chongqing Science and Technology Commission,China
文摘The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.
基金Project(2016YBF0701205) supported by the National Key Research and Development Program of ChinaProjects(51271121,51471109) supported by the National Natural Science Foundation of ChinaProject(13KY0501) supported by Shanghai University of Engineering Science Innovation Fund for Graduate Students,China
文摘Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties.The microstructure,phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS).The results show that the clad layer mainly consists ofα-Mg,Mg2Si dendrites,Mg17Al12and Al3Mg2phases.Owing to the formation of Mg2Si,Mg17Al12and Al3Mg2intermetallic compounds in the melted region and grain refinement,the microhardness of the clad layer(HV0.025310)is about5times higher than that of the substrate(HV0.02554).Besides,corrosion tests in the NaCl(3.5%,mass fraction)water solution show that the corrosion potential is increased from-1574.6mV for the untreated sample to-128.7mV for the laser-clad sample,while the corrosion current density is reduced from170.1to6.7μA/cm2.These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.
文摘A Mg-6Zn-3Gd(mass fraction,%) alloy,noted as ZG63,was coated by different micro-arc oxidation(MAO) processes,and the coating structure and corrosion resistance of the alloy were studied using scanning electron microscopy(SEM),glancing angle X-ray diffractometry(GAXRD) and various electrochemical methods.The micro-arc oxidation process consists of three stages and corresponds with different coating structures.In the initial stage,the coating thickness is linearly increased and is controlled by electrochemical polarization.In the second stage,the coating grows mainly inward and accords with parabolic regularity.In the third stage,the loose coating forms and is controlled by local arc light.The looser coating is mainly composed of MgSiO3 and the compact coating is mainly composed of MgO.From micro-arc oxidation stage to local arc light stage,the corrosion resistance of the coated alloy firstly increases and then decreases.The satisfied corrosion resistance corresponds to the coating time ranging from 6 to10 min.
基金the National Natural Science Foundation of China(Nos.51671041,51701029 and 51531002)the National Key Research and Development Program of China(No.2016YFB0301100)+2 种基金the Fundamental Research Funds for the Central Universities(No.106112016CDJXZ138811)China Postdoctoral Science Foundation Funded Project(Nos.2017M620410 and 2018T110942)the Chongqing Postdoctoral Scientific Research Foundation(No.Xm2017010)。
文摘The microstructure and corrosion resistance of Mg-0.5 Zn-0.2 Ca-0.2 Ce alloy with different processing conditions were investigated.The composition was detected by X-ray fluorescence(XRF),and the microstructure was analyzed by optical microscopy(OM)and scanning electron microscope(SEM)equipped with energy-dispersive spectroscopy(EDS).The corrosion behavior was investigated by hydrogen evolution tests,weight loss tests and electrochemical measurements.The Mg-0.5 Zn-0.2 Ca-0.2 Ce alloy has much better corrosion resistance compared with the commercial AZ31 sheet,which can be attributed to its dispersive second phases and protective corrosion products film on the alloy surface.Moreover,the as-rolled Mg-0.5 Zn-0.2 Ca-0.2 Ce alloy shows much better corrosion resistance compared with the as-extruded Mg-0.5 Zn-0.2 Ca-0.2 Ce alloy.This can be due to three aspects:The as-rolled alloy has smaller grain size;the as-rolled alloy has lower(1010)/(1120)texture intensity;the residual stress of the as-rolled alloy is eliminated during the annealing process,but large residual stress exists in the asextruded alloy produced by the extrusion process.