The microstructures and mechanical properties of as-cast Mg-5 Sn-1 Si magnesium alloy modified with trace elements Y,Bi,Sb and Sr were investigated and compared.Results show that the microstructure of the as-cast Mg-5...The microstructures and mechanical properties of as-cast Mg-5 Sn-1 Si magnesium alloy modified with trace elements Y,Bi,Sb and Sr were investigated and compared.Results show that the microstructure of the as-cast Mg-5 Sn-1 Si alloy consists ofα-Mg,Mg_(2) Si,Mg_(2) Sn and Mg_(2)(Si_xSn_(1-x))phases.After adding 0.8 wt.%Y,0.3 wt.%Bi,0.9 wt.%Sb and 0.9 wt.%Sr,respectively into the Mg-5 Sn-1 Si magnesium alloy,Mg_(24)Y_(5),Mg_(3) Bi_(2),Mg_(3) Sb_(2) and Mg_(2) Sr phases are precipitated accordingly.Trace elements can refineα-Mg grain and Chinese scriptshaped Mg_(2) Si phase.Refinement efficiency of different trace elements onα-Mg grain and Mg_(2) Si phase is varied.Sr element has the best refinement effect,followed by Sb and Bi,while Y has the least refinement effect.Mg-5 Sn-1 Si-0.9 Sr alloy has higher tensile properties than the other three modified alloys.The refinement mechanism of Y,Bi and Sr elements on Mg-5 Sn-1 Si magnesium alloy can be explained by the growth restriction factors and the solute undercooling.For Mg-5 Sn-1 Si-0.9 Sb alloy,the heterogeneous nuclei of Mg_(3) Sb_(2) phase is the main reason for the refinement of grains and second phases.展开更多
The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing ...The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing temperature gradient in the plate with decreasing quenching rate,which leads to weakened inhomogeneous plastic deformation and decreased residual stress.No dynamic precipitation on the grain boundary happens after either cold water cooling or air cooling,however,air cooling leads to dynamic precipitation of Mg-Zn phase on Mn particles around which a low-density precipitate zone develops after aging treatment.Moreover,the fine and densely distributed Mg-Zn precipitates observed after aging treatment of the cold water cooled alloy are replaced by coarse precipitates with low density for the air cooled alloy.Both the low-density precipitate zone near Mn particles and the coarsening of precipitates are the source of the decrease in hardness and tensile properties of the air cooled alloy.The residual stress drops faster than the hardness with decreasing quenching rate,which makes it possible to lower the residual stress without sacrificing too much age-hardening ability of the alloy.展开更多
基金the financial support by the Natioal Natural Science Foundation of China(Nos.:51571086 and 51271073)the financial support from the Natural Science Foundation of Henan Polytechnic University(No.:B2010-20)。
文摘The microstructures and mechanical properties of as-cast Mg-5 Sn-1 Si magnesium alloy modified with trace elements Y,Bi,Sb and Sr were investigated and compared.Results show that the microstructure of the as-cast Mg-5 Sn-1 Si alloy consists ofα-Mg,Mg_(2) Si,Mg_(2) Sn and Mg_(2)(Si_xSn_(1-x))phases.After adding 0.8 wt.%Y,0.3 wt.%Bi,0.9 wt.%Sb and 0.9 wt.%Sr,respectively into the Mg-5 Sn-1 Si magnesium alloy,Mg_(24)Y_(5),Mg_(3) Bi_(2),Mg_(3) Sb_(2) and Mg_(2) Sr phases are precipitated accordingly.Trace elements can refineα-Mg grain and Chinese scriptshaped Mg_(2) Si phase.Refinement efficiency of different trace elements onα-Mg grain and Mg_(2) Si phase is varied.Sr element has the best refinement effect,followed by Sb and Bi,while Y has the least refinement effect.Mg-5 Sn-1 Si-0.9 Sr alloy has higher tensile properties than the other three modified alloys.The refinement mechanism of Y,Bi and Sr elements on Mg-5 Sn-1 Si magnesium alloy can be explained by the growth restriction factors and the solute undercooling.For Mg-5 Sn-1 Si-0.9 Sb alloy,the heterogeneous nuclei of Mg_(3) Sb_(2) phase is the main reason for the refinement of grains and second phases.
基金supported by the National Key Research and Development Program of China[2016YFB0301105]the National Key Research and Development Plan[2017YFB0103904]
文摘The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing temperature gradient in the plate with decreasing quenching rate,which leads to weakened inhomogeneous plastic deformation and decreased residual stress.No dynamic precipitation on the grain boundary happens after either cold water cooling or air cooling,however,air cooling leads to dynamic precipitation of Mg-Zn phase on Mn particles around which a low-density precipitate zone develops after aging treatment.Moreover,the fine and densely distributed Mg-Zn precipitates observed after aging treatment of the cold water cooled alloy are replaced by coarse precipitates with low density for the air cooled alloy.Both the low-density precipitate zone near Mn particles and the coarsening of precipitates are the source of the decrease in hardness and tensile properties of the air cooled alloy.The residual stress drops faster than the hardness with decreasing quenching rate,which makes it possible to lower the residual stress without sacrificing too much age-hardening ability of the alloy.