The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates ...The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates the mean grain size of 15 μm for the extruded and 100 μm for the as-cast Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys. The corrosion morphology of as-cast sample shows pitting corrosion and little filiform corrosion, but that of the extruded sample shows pitting corrosion at the initial stage. The corrosion rate of extruded sample is higher than that of as-cast Mg-5Y-7Gd-1Nd-0.5Zr alloy according to the immersion test. The second phases containing RE acting as cathodes improve the corrosion properties. The corrosion potentials of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr alloys are -1.658 V and -1.591 V, respectively. The origins of the distinctive corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr Mg alloys were discussed.展开更多
The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron micr...The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron microscopy(SEM), electron back scattered diffraction(EBSD), transmission electron microscopy(TEM), hardness tests and uniaxial tensile tests. The results showed that the as-cast alloy consisted of α(Mg), Mn, Mg7Zn3, Mg2 Sn and Mg Sn Nd phases. Dynamic recrystallization has completed during the extrusion process and the average grain size was 7.2 μm. After T5 treatment, the strength increased obviously, the yield strength and ultimate tensile strength of as-extruded alloy were increased by 94 and 34 MPa, respectively. Microstructure characterization revealed that the improvement of strength was determined by the high number density of β′1 rods.展开更多
The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to t...The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.展开更多
The microstructures and mechanical properties of as-cast Mg-5 Sn-1 Si magnesium alloy modified with trace elements Y,Bi,Sb and Sr were investigated and compared.Results show that the microstructure of the as-cast Mg-5...The microstructures and mechanical properties of as-cast Mg-5 Sn-1 Si magnesium alloy modified with trace elements Y,Bi,Sb and Sr were investigated and compared.Results show that the microstructure of the as-cast Mg-5 Sn-1 Si alloy consists ofα-Mg,Mg_(2) Si,Mg_(2) Sn and Mg_(2)(Si_xSn_(1-x))phases.After adding 0.8 wt.%Y,0.3 wt.%Bi,0.9 wt.%Sb and 0.9 wt.%Sr,respectively into the Mg-5 Sn-1 Si magnesium alloy,Mg_(24)Y_(5),Mg_(3) Bi_(2),Mg_(3) Sb_(2) and Mg_(2) Sr phases are precipitated accordingly.Trace elements can refineα-Mg grain and Chinese scriptshaped Mg_(2) Si phase.Refinement efficiency of different trace elements onα-Mg grain and Mg_(2) Si phase is varied.Sr element has the best refinement effect,followed by Sb and Bi,while Y has the least refinement effect.Mg-5 Sn-1 Si-0.9 Sr alloy has higher tensile properties than the other three modified alloys.The refinement mechanism of Y,Bi and Sr elements on Mg-5 Sn-1 Si magnesium alloy can be explained by the growth restriction factors and the solute undercooling.For Mg-5 Sn-1 Si-0.9 Sb alloy,the heterogeneous nuclei of Mg_(3) Sb_(2) phase is the main reason for the refinement of grains and second phases.展开更多
Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K alon...Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.展开更多
The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing ...The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing temperature gradient in the plate with decreasing quenching rate,which leads to weakened inhomogeneous plastic deformation and decreased residual stress.No dynamic precipitation on the grain boundary happens after either cold water cooling or air cooling,however,air cooling leads to dynamic precipitation of Mg-Zn phase on Mn particles around which a low-density precipitate zone develops after aging treatment.Moreover,the fine and densely distributed Mg-Zn precipitates observed after aging treatment of the cold water cooled alloy are replaced by coarse precipitates with low density for the air cooled alloy.Both the low-density precipitate zone near Mn particles and the coarsening of precipitates are the source of the decrease in hardness and tensile properties of the air cooled alloy.The residual stress drops faster than the hardness with decreasing quenching rate,which makes it possible to lower the residual stress without sacrificing too much age-hardening ability of the alloy.展开更多
The effects of addition of minor amount of(0.5 wt.%) antimony(Sb) or gadolinium(Gd) and combined addition of Sb and Gd(0.5 wt.%,respectively) on the hot tearing susceptibility(HTS) of Mg-5Al-3Ca alloy were investigate...The effects of addition of minor amount of(0.5 wt.%) antimony(Sb) or gadolinium(Gd) and combined addition of Sb and Gd(0.5 wt.%,respectively) on the hot tearing susceptibility(HTS) of Mg-5Al-3Ca alloy were investigated experimentally using a “T-shaped” hot tearing measuring system. Various solidification parameters of the alloys were measured and calculated through thermal analysis experiments. The microstructure, grain size, and morphology of the crack zone were characterized by scanning electron microscopy and electron backscatter diffraction, and the crystal phases of the alloys were analyzed by X-ray diffraction and energy-dispersive X-ray spectroscopy. The results showed that the addition of 0.5 wt.% Gd resulted in the increase in the vulnerable temperature range(Tv) and reduced the eutectic structure content that could participate in feeding, thereby improving the HTS of the alloy. However, addition of 0.5 wt.% Sb or combined addition of Gd and Sb(0.5 wt.%, respectively) to the Mg-5Al-3Ca alloy shortened the Tvand improved the skeleton strength of the alloy, thereby reducing HTS. Moreover, significantly refined structure of Mg-5Al-3Ca-0.5Gd-0.5Sb alloy improved the feeding ability of the eutectic structure, thus the alloy exhibited the lowest HTS.展开更多
The sliding friction and wear behaviors of Mg-11Y-5Gd-2Zn-0.5Zr (wt%) alloy were investigated under oil lubricant condition by pin-on-disk configuration with a constant sliding distance of 1,000 m in the temperature...The sliding friction and wear behaviors of Mg-11Y-5Gd-2Zn-0.5Zr (wt%) alloy were investigated under oil lubricant condition by pin-on-disk configuration with a constant sliding distance of 1,000 m in the temperature range of 25-200℃. Results indicate that the volumetric wear rates and average friction coefficients decrease with the increase of sliding speeds, and increase with the increase of test temperature below 150℃. The hard and thermally stable Mg12(Y,Gd)Zn phase with long-period stacking order structure in the alloy presents significant wear resistance, The wear mechanism below 100℃ is abrasive wear as a result of plastic extrusion deformation. The corporate effects of severe abrasive, oxidative, and delaminating wear result in the tribological mechanism above 100℃.展开更多
Hot tearing is a common and severe defect occurring during solidification of castings. The rational understand- ing of hot tearing formation mechanism is beneficial to the foundry process design. In the present resear...Hot tearing is a common and severe defect occurring during solidification of castings. The rational understand- ing of hot tearing formation mechanism is beneficial to the foundry process design. In the present research, a new developed instrumented "CRC" equipment was applied in characterization of hot tearing in sand cast Mg-5 wt.% Y-4 wt.% RE (WE54) alloy with and without Zr addition. Microstructure observation and thermal analysis were carried out to help analyzing the results. The results showed that hot tearing onset occurs at a relatively low solid fraction (fs) in WE54 alloy sand castings, which indicates the participation of remaining liquid during hot tearing formation. Microstructure observation of the hot tearing surface also proves the liquid film existence between solidifying dendrites. The contraction strain caused by casting solidification induces the flowing of remaining liquid between solidifying dendrites and results in formation of interdendritic liquid films. These liquid films are separated by sufficient contraction stress and form hot cracks. The addition of Zr in WE54 alloy significantly refines the alloy microstructure and increases the solid fraction at hot tearing onset, both of which result in increasing of the fracture stress of interdendritic liquid film. Thus the hot tearing susceptibility of WE54 alloy is weakened by Zr addition.展开更多
As reported in our previous works, a Mg-7Gd-5Y-1Nd-0.5Zr alloy recently developed exhibited remarkable age-hardening responses and excellent mechanical properties at both room and elevated temperatures. In Mg-7Gd-5Y-1...As reported in our previous works, a Mg-7Gd-5Y-1Nd-0.5Zr alloy recently developed exhibited remarkable age-hardening responses and excellent mechanical properties at both room and elevated temperatures. In Mg-7Gd-5Y-1Nd-0.5Zr alloy, the β pre- cipitate phase was assumed to he one of the main strengthening phases in peak-aged samples. This study aimed to determine the crys- tal structure and orientation relationship of the β precipitate phase in Mg-7Gd-5Y-INd-0.5Zr alloy using transmission electron mi- croscopy and high-resolution electron microscopy. The results indicated that the β precipitate had a face-centered cubic structure with a lattice parameter of a=2.22 nm. The orientation relationship between the β precipitate phase and the ct-Mg matrix was (i-12)β(1-100)α, [110]β[0001 ]α. Theβ plates formed on prismatic planes could play an important role in alloy strengthening by proving effective barriers to gliding dislocations. A single β plate often contained several domains of (1 11)β twin-related variants. A composition of Mgs(Y0.4Gdo.4Nd0.2) was suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.展开更多
The corrosion behaviors of T5 (225 ℃, 6.5 h) and T6 (460 ℃, 2 h + 225 ℃, 12 h) peak-aged Mg-7Gd- 5Y-1Nd-0.5Zr alloys with oxide films were investigated by optical microscope (OM), scanning electron microsco...The corrosion behaviors of T5 (225 ℃, 6.5 h) and T6 (460 ℃, 2 h + 225 ℃, 12 h) peak-aged Mg-7Gd- 5Y-1Nd-0.5Zr alloys with oxide films were investigated by optical microscope (OM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The weight loss rates and electrochemical tests were also analyzed. The thicknesses of T5 and T6 oxide films are roughly 0.6 and 1.0 μm, respectively. The components of oxide films mainly consist of O, Mg, Y, Nd, and Gd, and the T6 oxide film results in surfaces with larger peaks than T5 oxide film. In addition, Y, Nd, and Gd peaks are all higher than those of Mg-7Gd-5Y- 1Nd-0.5Zr alloys, but Mg peak is consistently far below than that of the alloys. The specimens could be arranged in de- creasing order of corrosion rates and corrosion current densi- ties: T6 oxide film 〈 T5 oxide film 〈 T6 without oxide film 〈 T5 without oxide film. The oxide films are compact to increase the corrosion resistance for Mg-7Gd-5Y-1Nd-0.5Zr alloys, which will provide a guiding insight into the corrosion and protection of Mg-RE alloys in atmospheric environments.展开更多
The strength of traditional Al-Mg alloys is relatively low because it mainly relies on solid solution strengthening.Adding a third component to form precipitation can improve their strength,but it usually leads to hig...The strength of traditional Al-Mg alloys is relatively low because it mainly relies on solid solution strengthening.Adding a third component to form precipitation can improve their strength,but it usually leads to high-stress corrosion cracking(SCC)sensitivity due to the formation of high-density precipitates at grain boundaries(GBs).So far,it is still challenging to improve the strength of Al-Mg alloys without re-ducing SCC resistance.Herein,a nanostructured Al-5Mg-3 Zn alloy with a good yield strength of 336 MPa and good elongation was successfully produced.By dynamic plastic deformation and appropriate anneal-ing treatment,near-equiaxed nanograins were introduced in the nanostructured Al-5Mg-3 Zn alloy with a high proportion(71%)of the low-angle grain boundary.TEM statistical investigations show that the pre-cipitation of active T’phase at GBs has been greatly suppressed in the nanostructured Al-5Mg-3 Zn alloy at sensitized conditions,and the area fraction of GB precipitates is reduced from 72%to 21%,which sig-nificantly decreases the SCC susceptibility.This study provides guidance for developing advanced Al-Mg alloy with high SCC resistance.展开更多
基金Project (2011BAE22B01) supported by the National Key Technology R&D Program of China
文摘The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates the mean grain size of 15 μm for the extruded and 100 μm for the as-cast Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys. The corrosion morphology of as-cast sample shows pitting corrosion and little filiform corrosion, but that of the extruded sample shows pitting corrosion at the initial stage. The corrosion rate of extruded sample is higher than that of as-cast Mg-5Y-7Gd-1Nd-0.5Zr alloy according to the immersion test. The second phases containing RE acting as cathodes improve the corrosion properties. The corrosion potentials of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr alloys are -1.658 V and -1.591 V, respectively. The origins of the distinctive corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr Mg alloys were discussed.
基金Project(2013CB632200)supported by the National Great Theoretic Research,ChinaProject(2011BAE22B01-3)supported by the National Sci&Tech Support Program,ChinaProject(2010DFR50010)supported by the International Cooperation,Sharing Fund of Chongqing University’s Large-scale Equipment,China
文摘The microstructures and mechanical properties of Mg-6Zn-1Mn-4Sn-1.5Nd alloy subjected to extrusion and T5 treatment were investigated using optical microscopy(OM), X-ray diffractometer(XRD), scanning electron microscopy(SEM), electron back scattered diffraction(EBSD), transmission electron microscopy(TEM), hardness tests and uniaxial tensile tests. The results showed that the as-cast alloy consisted of α(Mg), Mn, Mg7Zn3, Mg2 Sn and Mg Sn Nd phases. Dynamic recrystallization has completed during the extrusion process and the average grain size was 7.2 μm. After T5 treatment, the strength increased obviously, the yield strength and ultimate tensile strength of as-extruded alloy were increased by 94 and 34 MPa, respectively. Microstructure characterization revealed that the improvement of strength was determined by the high number density of β′1 rods.
基金Project(50725413) supported by the National Natural Science Foundation of ChinaProject (2007CB613704) supported by the National Basic Research Program of China Projects(2006AA4012-9-6,2007BB4400) supported by Chongqing Science and Technology Commission,China
文摘The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.
基金the financial support by the Natioal Natural Science Foundation of China(Nos.:51571086 and 51271073)the financial support from the Natural Science Foundation of Henan Polytechnic University(No.:B2010-20)。
文摘The microstructures and mechanical properties of as-cast Mg-5 Sn-1 Si magnesium alloy modified with trace elements Y,Bi,Sb and Sr were investigated and compared.Results show that the microstructure of the as-cast Mg-5 Sn-1 Si alloy consists ofα-Mg,Mg_(2) Si,Mg_(2) Sn and Mg_(2)(Si_xSn_(1-x))phases.After adding 0.8 wt.%Y,0.3 wt.%Bi,0.9 wt.%Sb and 0.9 wt.%Sr,respectively into the Mg-5 Sn-1 Si magnesium alloy,Mg_(24)Y_(5),Mg_(3) Bi_(2),Mg_(3) Sb_(2) and Mg_(2) Sr phases are precipitated accordingly.Trace elements can refineα-Mg grain and Chinese scriptshaped Mg_(2) Si phase.Refinement efficiency of different trace elements onα-Mg grain and Mg_(2) Si phase is varied.Sr element has the best refinement effect,followed by Sb and Bi,while Y has the least refinement effect.Mg-5 Sn-1 Si-0.9 Sr alloy has higher tensile properties than the other three modified alloys.The refinement mechanism of Y,Bi and Sr elements on Mg-5 Sn-1 Si magnesium alloy can be explained by the growth restriction factors and the solute undercooling.For Mg-5 Sn-1 Si-0.9 Sb alloy,the heterogeneous nuclei of Mg_(3) Sb_(2) phase is the main reason for the refinement of grains and second phases.
基金National Natural Science Foundation of China(Nos.51571145,51404137)City of Ningbo"science and technology innovation 2025"major special project(new energy vehicle lightweight magnesium alloy material precision forming technology)(No.2018B10045).
文摘Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.
基金supported by the National Key Research and Development Program of China[2016YFB0301105]the National Key Research and Development Plan[2017YFB0103904]
文摘The effect of the quenching rate after solution treatment on the residual stress and precipitation behavior of a high strength Mg-5 Zn-3.5 Sn-1 Mn-0.5 Ca-0.5 Cu plate is studied.The simulation results show decreasing temperature gradient in the plate with decreasing quenching rate,which leads to weakened inhomogeneous plastic deformation and decreased residual stress.No dynamic precipitation on the grain boundary happens after either cold water cooling or air cooling,however,air cooling leads to dynamic precipitation of Mg-Zn phase on Mn particles around which a low-density precipitate zone develops after aging treatment.Moreover,the fine and densely distributed Mg-Zn precipitates observed after aging treatment of the cold water cooled alloy are replaced by coarse precipitates with low density for the air cooled alloy.Both the low-density precipitate zone near Mn particles and the coarsening of precipitates are the source of the decrease in hardness and tensile properties of the air cooled alloy.The residual stress drops faster than the hardness with decreasing quenching rate,which makes it possible to lower the residual stress without sacrificing too much age-hardening ability of the alloy.
基金financial support from Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (2019JH3/30100014)Liaoning Bai Qian Wan Talents Program. Liaoning Revitalization Talents Program (Nos. XLYC1807021 and 1907007)+2 种基金High Level Innovation Team of Liaoning Province(XLYC1908006)Project of Liaoning Education Department(Nos. LQGD2019002, and LJGD2020008)Liaoning Nature Fund Guidance Plan (No. 2019-ZD-0210)。
文摘The effects of addition of minor amount of(0.5 wt.%) antimony(Sb) or gadolinium(Gd) and combined addition of Sb and Gd(0.5 wt.%,respectively) on the hot tearing susceptibility(HTS) of Mg-5Al-3Ca alloy were investigated experimentally using a “T-shaped” hot tearing measuring system. Various solidification parameters of the alloys were measured and calculated through thermal analysis experiments. The microstructure, grain size, and morphology of the crack zone were characterized by scanning electron microscopy and electron backscatter diffraction, and the crystal phases of the alloys were analyzed by X-ray diffraction and energy-dispersive X-ray spectroscopy. The results showed that the addition of 0.5 wt.% Gd resulted in the increase in the vulnerable temperature range(Tv) and reduced the eutectic structure content that could participate in feeding, thereby improving the HTS of the alloy. However, addition of 0.5 wt.% Sb or combined addition of Gd and Sb(0.5 wt.%, respectively) to the Mg-5Al-3Ca alloy shortened the Tvand improved the skeleton strength of the alloy, thereby reducing HTS. Moreover, significantly refined structure of Mg-5Al-3Ca-0.5Gd-0.5Sb alloy improved the feeding ability of the eutectic structure, thus the alloy exhibited the lowest HTS.
基金supported by the National Natural Science Foundation of China (No. 51074106)Key HiTech Research and Development Program of China (No. 2009AA033501)National Key Technology R&D Program of China (No. 2011BAE22B01-5)
文摘The sliding friction and wear behaviors of Mg-11Y-5Gd-2Zn-0.5Zr (wt%) alloy were investigated under oil lubricant condition by pin-on-disk configuration with a constant sliding distance of 1,000 m in the temperature range of 25-200℃. Results indicate that the volumetric wear rates and average friction coefficients decrease with the increase of sliding speeds, and increase with the increase of test temperature below 150℃. The hard and thermally stable Mg12(Y,Gd)Zn phase with long-period stacking order structure in the alloy presents significant wear resistance, The wear mechanism below 100℃ is abrasive wear as a result of plastic extrusion deformation. The corporate effects of severe abrasive, oxidative, and delaminating wear result in the tribological mechanism above 100℃.
基金financially supported by the National Basic Research Program of China(No.2013CB632202)
文摘Hot tearing is a common and severe defect occurring during solidification of castings. The rational understand- ing of hot tearing formation mechanism is beneficial to the foundry process design. In the present research, a new developed instrumented "CRC" equipment was applied in characterization of hot tearing in sand cast Mg-5 wt.% Y-4 wt.% RE (WE54) alloy with and without Zr addition. Microstructure observation and thermal analysis were carried out to help analyzing the results. The results showed that hot tearing onset occurs at a relatively low solid fraction (fs) in WE54 alloy sand castings, which indicates the participation of remaining liquid during hot tearing formation. Microstructure observation of the hot tearing surface also proves the liquid film existence between solidifying dendrites. The contraction strain caused by casting solidification induces the flowing of remaining liquid between solidifying dendrites and results in formation of interdendritic liquid films. These liquid films are separated by sufficient contraction stress and form hot cracks. The addition of Zr in WE54 alloy significantly refines the alloy microstructure and increases the solid fraction at hot tearing onset, both of which result in increasing of the fracture stress of interdendritic liquid film. Thus the hot tearing susceptibility of WE54 alloy is weakened by Zr addition.
基金supported by the National "Twelfth Five-Year Plan" Key Technologies Program of China (2011DAE22B01)
文摘As reported in our previous works, a Mg-7Gd-5Y-1Nd-0.5Zr alloy recently developed exhibited remarkable age-hardening responses and excellent mechanical properties at both room and elevated temperatures. In Mg-7Gd-5Y-1Nd-0.5Zr alloy, the β pre- cipitate phase was assumed to he one of the main strengthening phases in peak-aged samples. This study aimed to determine the crys- tal structure and orientation relationship of the β precipitate phase in Mg-7Gd-5Y-INd-0.5Zr alloy using transmission electron mi- croscopy and high-resolution electron microscopy. The results indicated that the β precipitate had a face-centered cubic structure with a lattice parameter of a=2.22 nm. The orientation relationship between the β precipitate phase and the ct-Mg matrix was (i-12)β(1-100)α, [110]β[0001 ]α. Theβ plates formed on prismatic planes could play an important role in alloy strengthening by proving effective barriers to gliding dislocations. A single β plate often contained several domains of (1 11)β twin-related variants. A composition of Mgs(Y0.4Gdo.4Nd0.2) was suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.
基金financially supported by the National Natural Science Foundation of China(No.51204020)the National Basic Research Program of China(Nos.2013CB632202 and 2013CB632205)
文摘The corrosion behaviors of T5 (225 ℃, 6.5 h) and T6 (460 ℃, 2 h + 225 ℃, 12 h) peak-aged Mg-7Gd- 5Y-1Nd-0.5Zr alloys with oxide films were investigated by optical microscope (OM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The weight loss rates and electrochemical tests were also analyzed. The thicknesses of T5 and T6 oxide films are roughly 0.6 and 1.0 μm, respectively. The components of oxide films mainly consist of O, Mg, Y, Nd, and Gd, and the T6 oxide film results in surfaces with larger peaks than T5 oxide film. In addition, Y, Nd, and Gd peaks are all higher than those of Mg-7Gd-5Y- 1Nd-0.5Zr alloys, but Mg peak is consistently far below than that of the alloys. The specimens could be arranged in de- creasing order of corrosion rates and corrosion current densi- ties: T6 oxide film 〈 T5 oxide film 〈 T6 without oxide film 〈 T5 without oxide film. The oxide films are compact to increase the corrosion resistance for Mg-7Gd-5Y-1Nd-0.5Zr alloys, which will provide a guiding insight into the corrosion and protection of Mg-RE alloys in atmospheric environments.
基金This research was financially supported by the National Nat-ural Science Foundation of China(Grant No.52171088)the Young Elite Scientists Sponsorship Program by CAST(grant No.2022QNRC001).We thank X.Si for assistance in sample prepara-tion.
文摘The strength of traditional Al-Mg alloys is relatively low because it mainly relies on solid solution strengthening.Adding a third component to form precipitation can improve their strength,but it usually leads to high-stress corrosion cracking(SCC)sensitivity due to the formation of high-density precipitates at grain boundaries(GBs).So far,it is still challenging to improve the strength of Al-Mg alloys without re-ducing SCC resistance.Herein,a nanostructured Al-5Mg-3 Zn alloy with a good yield strength of 336 MPa and good elongation was successfully produced.By dynamic plastic deformation and appropriate anneal-ing treatment,near-equiaxed nanograins were introduced in the nanostructured Al-5Mg-3 Zn alloy with a high proportion(71%)of the low-angle grain boundary.TEM statistical investigations show that the pre-cipitation of active T’phase at GBs has been greatly suppressed in the nanostructured Al-5Mg-3 Zn alloy at sensitized conditions,and the area fraction of GB precipitates is reduced from 72%to 21%,which sig-nificantly decreases the SCC susceptibility.This study provides guidance for developing advanced Al-Mg alloy with high SCC resistance.