The effects of Sn addition on the microstructure of as-cast and as-extruded Mg-9Li alloys were investigated. The results show that α-Mg, β-Li, Li2MgSn, and Mg2Sn are primary phases in the microstructures of the as-c...The effects of Sn addition on the microstructure of as-cast and as-extruded Mg-9Li alloys were investigated. The results show that α-Mg, β-Li, Li2MgSn, and Mg2Sn are primary phases in the microstructures of the as-cast and as-extruded Mg-9Li-xSn (x=0, 5; in mass fraction, %) alloys. Li2MgSn phase evolves from continuously net-like structure in the as-cast state to fine granular in the as-extruded state. After the extrusion, Mg-9Li-5Sn alloy has finer microstructures. Li2MgSn or Mg2Sn compound can act as the heterogeneous nucleation sites for dynamic recrystallization during the extrusion due to the crystallography matching relationship Extrusion deformation leads to dynamic recrystallization, which results in the grain refinement and uniform distribution. The as-extruded Mg-9Li-5Sn alloy possesses the lowest grain size of 45.9 μm.展开更多
The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),trans...The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.展开更多
Mg-12 Li, Mg-12 Li-3(Al-Si), Mg-12 Li-7(Al-Si) and Mg-12 Li-9(Al-Si) alloys(all in wt%) were fabricated by high frequency vacuum induction melting in a water cooled copper crucible. After subsequently hotrolli...Mg-12 Li, Mg-12 Li-3(Al-Si), Mg-12 Li-7(Al-Si) and Mg-12 Li-9(Al-Si) alloys(all in wt%) were fabricated by high frequency vacuum induction melting in a water cooled copper crucible. After subsequently hotrolling and annealing, their microstructure and mechanical properties were investigated. Experimental results show that mechanical properties of Mg-12 Li alloy were significantly improved by the addition of Al-Si eutectic alloy. Mg-12 Li-7(Al-Si) alloy shows the highest strength of 196 MPa of the investigated alloys, which is about 1.8 times of the strength of Mg-12 Li alloy, and maintains high elongation of 27%.The improved mechanical property with addition of Al and Si in the eutectic proportion into Mg-12 Li alloy was attributed to the solution strengthening effect of A1 and precipitation hardening effect from AlLi and Mg_2 Si precipitates.展开更多
Sheet samples of Mg-8Li,Mg-8Li-3Al,Mg-8Li-3AlSi and Mg-8Li-5AlSi alloys were obtained by hot rolling.Optical microscope,microhardness tester,nanoindentor,X-ray diffractometer and electrochemical analyzer were adopted ...Sheet samples of Mg-8Li,Mg-8Li-3Al,Mg-8Li-3AlSi and Mg-8Li-5AlSi alloys were obtained by hot rolling.Optical microscope,microhardness tester,nanoindentor,X-ray diffractometer and electrochemical analyzer were adopted to investigate the microstructures,micro-mechanical properties and corrosion resistance.Roller was preheated to 150°C before rolling process,and rolling reduction designed was about20% per pass with a total rolling reduction of 84%.The rolled plates were annealed at 200°C for 120 min.The tensile tests were performed at room temperature.Experimental results showed that both the strength and corrosion resistance of theα+βdual-phase of Mg-Li alloy were significantly improved with adding Al-Si elements.The strength enhancement was attributed to the solid solution of Al into theα-Mg matrix and into theβ-Li matrix as well as to the precipitation strengthening of Mg2 Si particles.Besides,the dendrite grains ofα-Mg transformed to equiaxed ones with addition of Al into alloy Mg-Li.展开更多
基金Projects(51171212,50725413) supported by the National Natural Science Foundation of ChinaProject(2009AA03Z507) supported by the National High-tech Research Program of China+1 种基金Projects(2010CSTC-BJLKR,CSTC2010AA4048) supported by Chongqing Science and Technology Commission,ChinaProject(CDJXS10132203) supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of Sn addition on the microstructure of as-cast and as-extruded Mg-9Li alloys were investigated. The results show that α-Mg, β-Li, Li2MgSn, and Mg2Sn are primary phases in the microstructures of the as-cast and as-extruded Mg-9Li-xSn (x=0, 5; in mass fraction, %) alloys. Li2MgSn phase evolves from continuously net-like structure in the as-cast state to fine granular in the as-extruded state. After the extrusion, Mg-9Li-5Sn alloy has finer microstructures. Li2MgSn or Mg2Sn compound can act as the heterogeneous nucleation sites for dynamic recrystallization during the extrusion due to the crystallography matching relationship Extrusion deformation leads to dynamic recrystallization, which results in the grain refinement and uniform distribution. The as-extruded Mg-9Li-5Sn alloy possesses the lowest grain size of 45.9 μm.
基金Project(2016YFB0300802)supported by the National Key Research and Development Program of China。
文摘The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.
基金supported by the Shanxi Scholarship Council of China (No.2014-029)the National Natural Science Foundation of China (Nos. 51474152, 51401143 and 51274149)
文摘Mg-12 Li, Mg-12 Li-3(Al-Si), Mg-12 Li-7(Al-Si) and Mg-12 Li-9(Al-Si) alloys(all in wt%) were fabricated by high frequency vacuum induction melting in a water cooled copper crucible. After subsequently hotrolling and annealing, their microstructure and mechanical properties were investigated. Experimental results show that mechanical properties of Mg-12 Li alloy were significantly improved by the addition of Al-Si eutectic alloy. Mg-12 Li-7(Al-Si) alloy shows the highest strength of 196 MPa of the investigated alloys, which is about 1.8 times of the strength of Mg-12 Li alloy, and maintains high elongation of 27%.The improved mechanical property with addition of Al and Si in the eutectic proportion into Mg-12 Li alloy was attributed to the solution strengthening effect of A1 and precipitation hardening effect from AlLi and Mg_2 Si precipitates.
基金supported by National Natural Science Foundation of China(51274149,51401143)Shanxi Scholarship Council of China(No.2014-029)
文摘Sheet samples of Mg-8Li,Mg-8Li-3Al,Mg-8Li-3AlSi and Mg-8Li-5AlSi alloys were obtained by hot rolling.Optical microscope,microhardness tester,nanoindentor,X-ray diffractometer and electrochemical analyzer were adopted to investigate the microstructures,micro-mechanical properties and corrosion resistance.Roller was preheated to 150°C before rolling process,and rolling reduction designed was about20% per pass with a total rolling reduction of 84%.The rolled plates were annealed at 200°C for 120 min.The tensile tests were performed at room temperature.Experimental results showed that both the strength and corrosion resistance of theα+βdual-phase of Mg-Li alloy were significantly improved with adding Al-Si elements.The strength enhancement was attributed to the solid solution of Al into theα-Mg matrix and into theβ-Li matrix as well as to the precipitation strengthening of Mg2 Si particles.Besides,the dendrite grains ofα-Mg transformed to equiaxed ones with addition of Al into alloy Mg-Li.