The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates ...The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates the mean grain size of 15 μm for the extruded and 100 μm for the as-cast Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys. The corrosion morphology of as-cast sample shows pitting corrosion and little filiform corrosion, but that of the extruded sample shows pitting corrosion at the initial stage. The corrosion rate of extruded sample is higher than that of as-cast Mg-5Y-7Gd-1Nd-0.5Zr alloy according to the immersion test. The second phases containing RE acting as cathodes improve the corrosion properties. The corrosion potentials of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr alloys are -1.658 V and -1.591 V, respectively. The origins of the distinctive corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr Mg alloys were discussed.展开更多
Aiming at the problems of poor plastic forming ability,narrow forging temperature range,and strain rate sensitivity of rare earth magnesium alloys,a study on the microstructure and mechanical properties of Mg-8Gd-3Y-0...Aiming at the problems of poor plastic forming ability,narrow forging temperature range,and strain rate sensitivity of rare earth magnesium alloys,a study on the microstructure and mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with different isothermal forging processes is carried out.The microstructure and properties of the alloy in the as-cast,isothermal forged,and post-aging states after forging are studied with optical microscope(OM),scanning electron microscope(SEM),and tensile testing.The results show that significant dynamic recrystallization occurs during the isothermal forging process,a fine equiaxed grain structure is formed,and the mechanical properties of the alloy are greatly improved.When the isothermal forging temperature is 460℃ and the strain rate is 0.02 s^(-1),the alloy structure performance is the best,the room temperature tensile yield strength(TYS)is 218 MPa,the ultimate tensile strength(UTS)is 299 MPa,and the fracture elongation(FE)is 19.2%.When the alloy is post-forging artificial aged,theα-Mg matrix is dispersed,the Mg_5(Gd,Y)phase is precipitated,the UTS of the alloy is increased to 392 MPa,and the FE is reduced to 12.0%.展开更多
The corrosion behaviors of T5 (225 ℃, 6.5 h) and T6 (460 ℃, 2 h + 225 ℃, 12 h) peak-aged Mg-7Gd- 5Y-1Nd-0.5Zr alloys with oxide films were investigated by optical microscope (OM), scanning electron microsco...The corrosion behaviors of T5 (225 ℃, 6.5 h) and T6 (460 ℃, 2 h + 225 ℃, 12 h) peak-aged Mg-7Gd- 5Y-1Nd-0.5Zr alloys with oxide films were investigated by optical microscope (OM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The weight loss rates and electrochemical tests were also analyzed. The thicknesses of T5 and T6 oxide films are roughly 0.6 and 1.0 μm, respectively. The components of oxide films mainly consist of O, Mg, Y, Nd, and Gd, and the T6 oxide film results in surfaces with larger peaks than T5 oxide film. In addition, Y, Nd, and Gd peaks are all higher than those of Mg-7Gd-5Y- 1Nd-0.5Zr alloys, but Mg peak is consistently far below than that of the alloys. The specimens could be arranged in de- creasing order of corrosion rates and corrosion current densi- ties: T6 oxide film 〈 T5 oxide film 〈 T6 without oxide film 〈 T5 without oxide film. The oxide films are compact to increase the corrosion resistance for Mg-7Gd-5Y-1Nd-0.5Zr alloys, which will provide a guiding insight into the corrosion and protection of Mg-RE alloys in atmospheric environments.展开更多
基金Project (2011BAE22B01) supported by the National Key Technology R&D Program of China
文摘The corrosion behaviours of Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys prepared by as-casting and extrusion were investigated in 5% NaCl aqueous solution by immersion and electrochemical tests. The microstructure indicates the mean grain size of 15 μm for the extruded and 100 μm for the as-cast Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys. The corrosion morphology of as-cast sample shows pitting corrosion and little filiform corrosion, but that of the extruded sample shows pitting corrosion at the initial stage. The corrosion rate of extruded sample is higher than that of as-cast Mg-5Y-7Gd-1Nd-0.5Zr alloy according to the immersion test. The second phases containing RE acting as cathodes improve the corrosion properties. The corrosion potentials of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr alloys are -1.658 V and -1.591 V, respectively. The origins of the distinctive corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr Mg alloys were discussed.
文摘Aiming at the problems of poor plastic forming ability,narrow forging temperature range,and strain rate sensitivity of rare earth magnesium alloys,a study on the microstructure and mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with different isothermal forging processes is carried out.The microstructure and properties of the alloy in the as-cast,isothermal forged,and post-aging states after forging are studied with optical microscope(OM),scanning electron microscope(SEM),and tensile testing.The results show that significant dynamic recrystallization occurs during the isothermal forging process,a fine equiaxed grain structure is formed,and the mechanical properties of the alloy are greatly improved.When the isothermal forging temperature is 460℃ and the strain rate is 0.02 s^(-1),the alloy structure performance is the best,the room temperature tensile yield strength(TYS)is 218 MPa,the ultimate tensile strength(UTS)is 299 MPa,and the fracture elongation(FE)is 19.2%.When the alloy is post-forging artificial aged,theα-Mg matrix is dispersed,the Mg_5(Gd,Y)phase is precipitated,the UTS of the alloy is increased to 392 MPa,and the FE is reduced to 12.0%.
基金financially supported by the National Natural Science Foundation of China(No.51204020)the National Basic Research Program of China(Nos.2013CB632202 and 2013CB632205)
文摘The corrosion behaviors of T5 (225 ℃, 6.5 h) and T6 (460 ℃, 2 h + 225 ℃, 12 h) peak-aged Mg-7Gd- 5Y-1Nd-0.5Zr alloys with oxide films were investigated by optical microscope (OM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The weight loss rates and electrochemical tests were also analyzed. The thicknesses of T5 and T6 oxide films are roughly 0.6 and 1.0 μm, respectively. The components of oxide films mainly consist of O, Mg, Y, Nd, and Gd, and the T6 oxide film results in surfaces with larger peaks than T5 oxide film. In addition, Y, Nd, and Gd peaks are all higher than those of Mg-7Gd-5Y- 1Nd-0.5Zr alloys, but Mg peak is consistently far below than that of the alloys. The specimens could be arranged in de- creasing order of corrosion rates and corrosion current densi- ties: T6 oxide film 〈 T5 oxide film 〈 T6 without oxide film 〈 T5 without oxide film. The oxide films are compact to increase the corrosion resistance for Mg-7Gd-5Y-1Nd-0.5Zr alloys, which will provide a guiding insight into the corrosion and protection of Mg-RE alloys in atmospheric environments.