The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500machine over deformation temperature range of300-450℃and strain rate of0.01-10s^-1.The mic...The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500machine over deformation temperature range of300-450℃and strain rate of0.01-10s^-1.The microstructural evolution of the alloy during the hot compression process was characterized by transmission electron microscopy(TEM)and electron back scatter diffractometry(EBSD).The results show that the flow stress behavior and microstructural evolution are sensitive to deformation parameters.The peak stress level,steady flow stress,dislocation density and amount of substructures of the alloy increase with decreasing deformation temperature and increasing strain rate.Conversely,the high angle grain boundary area increases,the grain boundary is in serrated shape and the dynamic recrystallization in the alloy occurs.The microstructure of the alloy is fibrous-like and the main softening mechanism is dynamic recovery during steady deformation state.The flow stress behavior can be represented by the Zener-Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of184.2538kJ/mol.The constitutive equation and the hot processing map were established.The hot processing map exhibits that the optimum processing conditions for Al-9Mg-1.1Li-0.5Mn alloy are in deformation temperature range from380to450℃and strain rate range from0.01to0.1s^-1.展开更多
The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant...The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant temperature and stress(473 K,70MPa).Besides,the creep behavior of Mg-9Al-1 Si-1SiC composite at various temperature from 448 K to 498 K and under stresses of 70-90 MPa were systematically investigated.The Mg-9Al-1 Si-1SiC composite exhibited a stress exponent from 5.5 to 6.9 and the creep activation energy fell within the range of 86-111 kJ/mol.The results showed that the creep mechanism of Mg-9Al-1Si-1SiC composite was mainly attributed to the effects of secondary phase strengthening mechanism and dislocation climb mechanism.展开更多
An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure...An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
The microstructures and mechanical properties of as-cast Mg-5 Sn-1 Si magnesium alloy modified with trace elements Y,Bi,Sb and Sr were investigated and compared.Results show that the microstructure of the as-cast Mg-5...The microstructures and mechanical properties of as-cast Mg-5 Sn-1 Si magnesium alloy modified with trace elements Y,Bi,Sb and Sr were investigated and compared.Results show that the microstructure of the as-cast Mg-5 Sn-1 Si alloy consists ofα-Mg,Mg_(2) Si,Mg_(2) Sn and Mg_(2)(Si_xSn_(1-x))phases.After adding 0.8 wt.%Y,0.3 wt.%Bi,0.9 wt.%Sb and 0.9 wt.%Sr,respectively into the Mg-5 Sn-1 Si magnesium alloy,Mg_(24)Y_(5),Mg_(3) Bi_(2),Mg_(3) Sb_(2) and Mg_(2) Sr phases are precipitated accordingly.Trace elements can refineα-Mg grain and Chinese scriptshaped Mg_(2) Si phase.Refinement efficiency of different trace elements onα-Mg grain and Mg_(2) Si phase is varied.Sr element has the best refinement effect,followed by Sb and Bi,while Y has the least refinement effect.Mg-5 Sn-1 Si-0.9 Sr alloy has higher tensile properties than the other three modified alloys.The refinement mechanism of Y,Bi and Sr elements on Mg-5 Sn-1 Si magnesium alloy can be explained by the growth restriction factors and the solute undercooling.For Mg-5 Sn-1 Si-0.9 Sb alloy,the heterogeneous nuclei of Mg_(3) Sb_(2) phase is the main reason for the refinement of grains and second phases.展开更多
基金Project (2017JJ2073) supported by the Natural Science Foundation of Hunan Province,China
文摘The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500machine over deformation temperature range of300-450℃and strain rate of0.01-10s^-1.The microstructural evolution of the alloy during the hot compression process was characterized by transmission electron microscopy(TEM)and electron back scatter diffractometry(EBSD).The results show that the flow stress behavior and microstructural evolution are sensitive to deformation parameters.The peak stress level,steady flow stress,dislocation density and amount of substructures of the alloy increase with decreasing deformation temperature and increasing strain rate.Conversely,the high angle grain boundary area increases,the grain boundary is in serrated shape and the dynamic recrystallization in the alloy occurs.The microstructure of the alloy is fibrous-like and the main softening mechanism is dynamic recovery during steady deformation state.The flow stress behavior can be represented by the Zener-Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of184.2538kJ/mol.The constitutive equation and the hot processing map were established.The hot processing map exhibits that the optimum processing conditions for Al-9Mg-1.1Li-0.5Mn alloy are in deformation temperature range from380to450℃and strain rate range from0.01to0.1s^-1.
基金Shanxi provice scientific facilities and instruments shared service platform of magnesium-based matierals electric impulse aided forming(201805D141005)National Natural Science Foundation of China(51404166,51704209,U1810208)+3 种基金Science and Technology Major Project of Shanxi province(20191102008,20191102007,20181101008)Natural Science Foundation of Shanxi Province(201701D121045)Shanxi Province Science Foundation for Youths(2016021063)The Projects of International Cooperation in Shanxi(201803D421086).
文摘The creep properties of as-cast Mg-9Al-1Si alloy and Mg-9Al-1Si-1SiC composite were compared.The results show that Mg-9A1-lSi-lSiC composite performs a better creep resistance than that of Mg-9Al-1Si alloy at constant temperature and stress(473 K,70MPa).Besides,the creep behavior of Mg-9Al-1 Si-1SiC composite at various temperature from 448 K to 498 K and under stresses of 70-90 MPa were systematically investigated.The Mg-9Al-1 Si-1SiC composite exhibited a stress exponent from 5.5 to 6.9 and the creep activation energy fell within the range of 86-111 kJ/mol.The results showed that the creep mechanism of Mg-9Al-1Si-1SiC composite was mainly attributed to the effects of secondary phase strengthening mechanism and dislocation climb mechanism.
基金Project(11C26211304055) supported by Small to Medium Enterprise Innovation Fund
文摘An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.
基金the financial support by the Natioal Natural Science Foundation of China(Nos.:51571086 and 51271073)the financial support from the Natural Science Foundation of Henan Polytechnic University(No.:B2010-20)。
文摘The microstructures and mechanical properties of as-cast Mg-5 Sn-1 Si magnesium alloy modified with trace elements Y,Bi,Sb and Sr were investigated and compared.Results show that the microstructure of the as-cast Mg-5 Sn-1 Si alloy consists ofα-Mg,Mg_(2) Si,Mg_(2) Sn and Mg_(2)(Si_xSn_(1-x))phases.After adding 0.8 wt.%Y,0.3 wt.%Bi,0.9 wt.%Sb and 0.9 wt.%Sr,respectively into the Mg-5 Sn-1 Si magnesium alloy,Mg_(24)Y_(5),Mg_(3) Bi_(2),Mg_(3) Sb_(2) and Mg_(2) Sr phases are precipitated accordingly.Trace elements can refineα-Mg grain and Chinese scriptshaped Mg_(2) Si phase.Refinement efficiency of different trace elements onα-Mg grain and Mg_(2) Si phase is varied.Sr element has the best refinement effect,followed by Sb and Bi,while Y has the least refinement effect.Mg-5 Sn-1 Si-0.9 Sr alloy has higher tensile properties than the other three modified alloys.The refinement mechanism of Y,Bi and Sr elements on Mg-5 Sn-1 Si magnesium alloy can be explained by the growth restriction factors and the solute undercooling.For Mg-5 Sn-1 Si-0.9 Sb alloy,the heterogeneous nuclei of Mg_(3) Sb_(2) phase is the main reason for the refinement of grains and second phases.